研究生: |
陳孝宇 Siao-Yu Chen |
---|---|
論文名稱: |
量子點半導體雷射在不同外部光回饋條件下的四波混頻分析 Four-wave mixing analysis on quantum-dot semiconductor lasers subject to optical feedback |
指導教授: |
林凡異
Fan-Yi Lin |
口試委員: |
黃承彬
陳明彰 林凡異 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 量子點半導體雷射 、光回饋 、四波混頻分析 、線寬增益係數 |
外文關鍵詞: | quantum-dot semiconductor laser, optical feedback, four-wave mixing analysis, linewidth enhancement factor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將利用四波混頻分析來量測量子點半導體雷射受到外部光回饋時的本質參數,進而探討半導體雷射之動態行為。
為了探討雷射對外部微擾下四波混頻的特性,我們推導了未受擾動以及受光回饋擾動下的量子點半導體雷射模型,得出其解析解,並將這些理論模型仔細地和數值模擬的結果作驗證比對。
接著將簡化後的速率方程式模型進行光回饋下量子點半導體雷射的四波混頻分析,其中我們討論了不同本質參數和不同光回饋條件下再生訊號頻譜和調幅訊號頻譜的變化。
實驗上我們藉由不同的調頻頻率下再生訊號和調幅訊號頻譜與理論模型進行擬合,便可以同時得到多個雷射本質參數,而不同光回饋條件下單模量子點半導體雷射的本質參數變化也可在四波混頻分析下討論。
實驗結果中展示了光回饋下的線寬增益係數在光回饋強度增加會有上升的現象,而光強度減弱時線寬增益係數會隨著降低,而且有機會低於無光回饋時的原始值。
我們也分別討論在長、短外部共振腔區域下的回饋光相位造成參數變化,
其中若將回饋光距離操作在短外部共振區域時會使線寬增益係數的變化更加明顯。
於結果中,當將光回饋距離固定在 2.0 公分,調變適當的光回饋強度及相位能使線寬增益係數下降至原始值的六成左右,這個現象可以用在降低光通訊的啾頻效應。
We have successfully applied the four-wave mixing (FWM) analysis on a quantum-dot (QD) semiconductor laser subject to optical feedback. The simplified rate equation model of the QD lasers for the FWM analysis is derived and verified. From the theoretical analysis, the characteristic behaviors of the regenerative and amplitude modulation spectra of the FWM signals are predicted by different intrinsic parameters and feedback conditions. By fitting the experimentally obtained regenerative signals and amplitude modulation signals with the respective curves from the rate equations which calculated at different detuning frequencies, the impacts on the QD lasers with different feedback conditions are extracted qualitatively and quantitatively. Moreover, the fitting results show that the linewidth enhancement factor of QD laser has a reduction of up to 40 % from its free-running value, resulting in the reduction of the chirp in optical communication.
[1] M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantumdot
semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004)
[2] D. O’Brien and S. P. Hegarty and G. Huyet and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1527 – 1529
(2004)
[3] O. Carroll, I. O’Driscoll, S. P. Hegarty, G. Huyet, J. Houlihan, E. A. Viktorov, and P. Mandel, “Feedback induced instabilities in a quantum dot semiconductor laser,” Opt. Express 14, 10831 – 10837 (2006).
[4] D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, and G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Let. 98, 153903 (2007).
[5] T. Erneux, E. A. Viktorov, B. Kelleher, D. Goulding, S. P. Hegarty, and G. Huyet, “Optically injected quantum-dot lasers,” Opt. Lett. 35, 937 – 939 (2010).
[6] B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, E. A. Viktorov and T. Erneux, “Optically Injected Single-Mode Quantum Dot Lasers,” in Quantum Dot Devices,
Zhiming M. Wang, eds. (Springer, 2012), pp. 1 – 22.
[7] C. H. Lin, H. H. Lin, and F. Y. Lin, “Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhaancemet factor extration,” Opt. Express 20,
101 – 110 (2012).
[8] C. H. Lin, and F. Y. Lin, “Four-wave mixing analysis on injection-locked quantum dot semiconductor lasers,” Opt. Express 21, 21242 – 21253 (2013).
[9] S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor α of quantum dot semiconductor lasers,” Opt. Express 14, 2950 – 2955 (2006).
[10] B. Lingnau, K. L¨udge, W. W. Chow, and E. Sch¨oll, “Failure of the _ factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201 (2012).
[11] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195 – 205 (2000).
[12] K. Kechaou, F. Grillot, J. G. Provost, B. Thedrez, and D. Erasme “Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization,” Opt.
Express 20, 26062 – 26074 (2012).
[13] F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1.3-_m InAs_GaAs Quantum-Dot Lasers,” IEEE J. Quantum Electron. 44, 946 – 951 (2008).
[14] T. C. Newll, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhacement factor in InAs quantum-dot laser diodes,” IEEE Photon. Tech. Lett. 11, 1527 – 1529 (1999).
[15] S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A. Kovsh, M. Kamp, S. Hofling, and A. Forchel, “Frequency-Dependent Linewidth Enhancement Factor of Quantum-Dot Lasers,” IEEE Photon. Tech. Lett. 20, 1736 – 1738 (2008).
[16] J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder interferometer,” IEEE Photon.
J. 3, 476 – 488 (2011).
[17] T. Fordell and A. M. Lindberg, “Experiments on the Linewidth-Enhancement Factor of a Vertical-Cavity Surface-Emitting Laser,” IEEE J. Quantum Electron. 43, 6 – 15 (2007).
[18] K. Iiyama, K. Hayashi, and Y. Ida, “Simple method for measuring the linewidth enhancement factor of semiconductor lasers by optical injection locking,” Opt. Lett. 17, 1128 – 1130 (1992).
[19] R. Hui, A. Mecozzi, A. D’ottavi, and P. Spano, “Novel measurement technique of alpha factor in DFB semiconductor lasers by injection locking,” Electron. Lett. 26, 997 – 998 (1990).
[20] I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum
Electron. 24, 148 – 154 (1988).
[21] J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957 – 965 (1994).
[22] C. H. Lin, H. H. Lin, and F. Y. Lin, “Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction,” Opt. Express 20, 101 – 110 (2012).
[23] C. F. Chuang, Y. H. Liao, C. H. Lin, S. Y. Chen, F. Grillot, and F. Y. Lin, “Linewidth enhancement factor in semiconductor lasers subject to various external optical feedback conditions,” Opt. Express 22, 5651 – 5658 (2014).
[24] Y. Yu and J. Xi, “Influence of external optical feedback on the alpha factor of semiconductor lasers,” Opt. Lett. 38, 1781 – 1783 (2013).
[25] K. Kechaou, F. Grillot, J. G. Provost, B. Thedrez, and D. Erasme, “Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization,” Opt.
Express 20, 26062 – 26074 (2012).
[26] H. Nakajim and R. Frey, “Intracavity nearly degenerate four-wave mixing in a (GaAl) As semiconductor laser,” Appl. Phys. Lett. 47, 769 – 771 (1985)
[27] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” Wiley, 2nd ed. (2006)
[28] A. Hohl and A. Gavrielides, “Experimental control of a chaotic semiconductor laser,” Opt. Lett. 23, 1606 – 1608 (1998)
[29] A. Hohl and A. Gavrielides, “Bifurcation cascade in a semiconductor laser subject to optical feedback,” Phys. Rev. Lett. 82, 1148 – 1151 (1999)
[30] A. Tabaka and K. Panajotov and I. Veretennicoff and M. Sciamanna, “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev. E 70, 036211 (2004)
[31] M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-_m self-assembled
InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[32] M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. and Quantum Electron. 38, 381 – 394 (2006).
[33] Nikolaus Schunk, Klaus Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24, 1242 – 1247
[34] R. J. Jones, P. S. Spencer, J. Lawrence, and D. M. Kane, “Influence of external cavity length on the coherence collapse regime in laser diodes subject to optical feedback,” IEE Proc.-Optoelectron. 148, 7 – 12 (2001)
[35] C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259 – 264 (1982)
[36] Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, “New linewidth enhancement determination method in semiconductor lasers based on spectral analysis above and below threshold,” Electron. Lett. 28, 9 – 11 (1992)