簡易檢索 / 詳目顯示

研究生: 鄧雯文
Wen-Wen Teng
論文名稱: 織構及鋯介層對奈米晶氮化鋯薄膜之結構與性質的影響
Characteristics of Structure and Properties of Nano-crystalline ZrN thin films: Effects of Texture and Zr Interlayer
指導教授: 喻冀平
Ge-Ping Yu
黃嘉宏
Jia-Hong Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 84
中文關鍵詞: 織構鋯介層氮化鋯薄膜硬度殘留應力腐蝕性質
外文關鍵詞: texture, Zr interlayer, ZrN thin film, hardness, residual stress, corrosion resistance
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗之目的為研究不同優選方向及加入鋯介層對氮化鋯薄膜之結構與性質的影響。利用非平衡磁控濺鍍系統,於基板溫度為400℃,分別通入1,3,4.2 sccm的氮氣流量,以控制薄膜優選方向為 (111),隨機,及 (200),成功地分別鍍著約300nm厚的奈米晶氮化鋯薄膜於P型(100)矽基板及AISI 304不□鋼基板上。此外,於上述三種鍍膜狀況下加入約130nm厚的鋯介層鍍著於不□鋼基板上,以研究鋯介層的影響。鍍膜狀況中雖改變通入氮的流量,但由拉賽福背向散射(RBS)所量測到氮化鋯薄膜中的氮鋯比例為0.8~0.9,因此成份變化的影響不大。
    織構變化對於殘留應力與腐蝕性質影響最為顯著。鍍著於矽基板及304不□鋼基板上且具隨機織構的氮化鋯薄膜,顯示較高的殘留壓應力。於1N硫酸水溶液下進行動態極化掃描,量測鍍著於矽基板上的氮化鋯薄膜,得到本質的氮化鋯薄膜腐蝕電位皆為正值,19~149 mVSCE。而鍍著於304不□鋼且具(200)優選方向的氮化鋯薄膜,顯示出最佳保護金屬基板的能力。織構變化對於氮化鋯硬度的影響,可由不同織構氮化鋯鍍著於矽基板的試片發現,並無顯著的不同。
    加入厚度130nm的鋯介層具有高度(0002)的優選方向,能將原製程控制具隨機織構的氮化鋯薄膜轉變為(200)織構。而當加入之鋯介層厚度達到240nm時,鋯介層(0002)方向優選程度更高,才能成功把原製程控制具(200)織構的氮化鋯薄膜轉變為隨機織構。鋯介層能改善上層氮化鋯薄膜的結晶性而造成較高的硬度值。同時鋯介層能提高具(111)及random織構的氮化鋯薄膜的抗腐蝕性,由於雙層的薄膜可以有效的阻斷薄膜中孔洞的聯接,防止腐蝕液浸蝕到金屬基板。然而,由殘留應力的量測結果發現,鋯介層並不具有降低上層氮化鋯薄膜中殘留壓應力之能力,相反的,使氮化鋯薄膜中的殘留壓應力提高,並降低氮化鋯薄膜的附著力。


    The purpose of this study is to investigate the effects of texture and the Zr interlayer on the structure and properties of nanocrystalline ZrN thin film. Nanocrystalline ZrN thin films were successfully deposited both on (100) p-type Si and AISI 304 stainless steel at a constant temperature 400℃ with introducing three different N2 flow rate, 1,3, and 4.2 sccm, to control the ZrN film textures as (111), random, and (200) by unbalanced magnetron sputtering system(UBMS). In addition, to understand the effects of Zr interlayer, Zr thin films with thickness of 130 nm were pre-deposited on SS304 substrate and then covered with ZrN thin films which were deposited under the three deposition conditions mentioned above respectively. The N/Zr ratios ranged from 0.8 to 0.9 by Rutherford Backscattering Spectroscopy (RBS) measurements.
    The effects of texture were remarkable on residual stress and corrosion resistance. ZrN thin films with random texture deposited both on Si and SS304 substrates showed the higher residual stress than those with (111) and (200) textures. The intrinsic corrosion potentials were obtained by ZrN/Si specimens from potentiodynamic polarization scanning in 1N H2SO4 solution. Intrinsic corrosion potentials exhibit positive values ranging from 19 to 149 mVSCE. ZrN films with (200) texture deposited on SS304 substrate displays the best protection of metal substrate. Different textures showed no distinct effect on hardness for ZrN/Si specimens.
    ZrN thin films deposited under random orientation condition showed (200) preferred orientation by introducing a highly (0002) preferred Zr interlayer with thickness of 130 nm. Only with a Zr interlayer which was more (0002) preferred with thickness up to 240 nm, ZrN thin film deposited under (200) preferred orientation condition displayed random preferred orientation. The Zr interlayer improved the crystallinity of the upper ZrN films, which resulted in higher hardness values of ZrN films. In addition, Zr interlayer can promoted the corrosion resistance of upper ZrN films with (111) and random textures due to bi-layer effect which can effectively prevent solution to attack the metal substrate by interrupting the connection of pinholes from film surface to metal substrate. However, Zr interlayer can not help the upper ZrN films to relieve residual stress on the contrary it decreases the adhesion of ZrN films.

    致謝 i 摘要 ii Abstract iii Contents v List of Figures viii List of Tables xi Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Deposition method (Unbalanced Magnetron Sputtering System, UBMS) .3 2.2 Characteristics of ZrN films 4 2.3 Main factors of Texture Evolution 7 2.3.1 Overall Energy 7 2.3.2 Surface Energy and Adatom Mobilities 8 2.3.3 Domain Matching Epitaxy (DME) 10 2.4 The Effect of texture on properties 13 2.4.1 Hardness 13 2.4.2 Residual Stress 13 2.5 The Effect of metal interlayer on upper film structure and properties 14 Chapter 3 Experimental Details 17 3.1 Specimen Preparation and Deposition Coating Process for ZrN thin films 17 3.2 Characterization Methods 21 3.2.1 Rutherford Backscattering Spectroscopy (RBS) 21 3.2.2 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) 22 3.2.3 Auger electron spectroscopy (AES) 22 3.2.4 X-Ray Diffraction and Glancing Incident X-Ray Diffraction 22 3.3 Properties Measurement 23 3.3.1 Electrical Resistivity 23 3.3.2 Atomic force microscopy (AFM) 24 3.3.3 Hardness 24 3.3.4 Residual Stress 25 3.3.4.1 Optical Method 25 3.3.4.2 Modified XRD sin2ψ Method 27 3.4 Corrosion Resistance 28 3.5 Coloration 29 Chapter 4 Results 31 4.1 Structure 31 4.1.1 N/Zr ratios and packing factor (RBS) 31 4.1.2 Scanning electron microscopy (SEM) 31 4.1.3 Auger electron spectroscopy (AES) 32 4.1.4 X-ray diffraction (XRD) 33 4.1.5 Glancing incident X-ray diffraction (GIXRD) 34 4.2 Properties 48 4.2.1 Electrical resistivity 48 4.2.2 Roughness 48 4.2.3 Hardness 48 4.2.4 Residual stress 49 4.2.5 Corrosion resistance ( potentiodynamic polarization scan ) 50 4.2.6 Coloration characteristics 51 Chapter 5 Discussion 60 5.1 Deposition Condition 60 5.1.1 Deposition Rate 60 5.1.2 The Development of Texture 61 5.1.3 Composition and Coloration 62 5.2 Transition of Preferred Orientation 67 5.3 Residual Stress 68 5.3.1 Single Layer ZrN 68 5.3.2 ZrN with Zr interlayer 69 5.4 Corrosion resistance 73 Chapter 6 Conclusions 75 References 76 Appendix 83

    [1] M.A. Auger, J.J. Araiza, C. Falcony, O. Snchez, J.M. Albella, Vacuum 81 (2007) 1462.
    [2] E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Ürgen, Surf. Coat. Technol. 116-119 (1999) 133.
    [3] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Thin Solid Films 405 (2002) 162.
    [4] S. Inoue, K. Tominga, R.P. Howson, K. Kusaka, J. Vac. Sci. Technol. A(13) (1995) 2808.
    [5] Hideto Yanagisawa, Katsutaka Sasaki1, Yoshio Abe, Midori Kawamura1, Satoko Shinkai1, Jpn. J. Appl. Phys. 37 (1998) 5714.
    [6] Mayumi B. Takeyama, Atsushi Noya, Kouichirou Sakanishi, J. Vac. Sci. Technol. B 18(3) (2000) 1333.
    [7] Mayumi B. Takeyama, Takaomi Itoi, Eiji Aoyagi, Atsushi Noya, Appl. Surf. Sci. 190 (2002) 450.
    [8] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 167 (2003) 59
    [9] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Surf. Coat. Technol. 112 (1999) 108.
    [10] Mayumi B. Takeyama, Atsushi Noya, and Kouichirou Sakanishi, J. Vac. Sci. Technol. B 18(3) (2000) 1333.
    [11] Mayumi B. Takeyama, Takaomi Itoi, Eiji Aoyagi, Atsushi Noya, Appl. Surf. Sci. 190 (2002) 450.
    [12] J. Westlinder *, J. Malmstrom, G. Sjoblom, J. Olsson, Solid-State Electronics 49 (2005) 1410.
    [13] W.J. Chou, G..P. Yu, J.H. Huang, Suf. Coat. Technol. 149 (2002) 7.
    [14] I. Iordanova, P.J. Kelly, R. Mirchev, V. Antonov, Vacuum 81 (2007) 830.
    [15] D.Gall, S. Kodambaka, M. A. Wall, I. Petrov, J. E. Greene, J. Appl. Phys. 93 (2003) 9086.
    [16] Yan Cheng, Y.F. Zheng, IEEE Transaction on Plasma Science 34 (2006) 1105.
    [17] K. Lukaszkowicz, L.A. Dobrza´nski, A. Zarychta, J. Mater. Pro. Technol. 157-158 (2004) 380
    [18] S.M. Rossnagel, Sputter Deposition, Opportunities for Innovation, in: W.D. Sproul, L.O. Legg (Eds.), Advanced Surface Engineering, Techonic Publishing Co., Switzerland, 1995.
    [19] B. Window, Surf. Coat. Technol. 81 (1996) 92.
    [20] B. Window, N. Savvides, J. Vac. Sci. Technol.A 4 (1986) 196.
    [21] B. Window, Surf. Coat. Technol. 71 (1995) 93.
    [22] D.G.. Teer, Surf. Coat. Technol. 39-40 (1989) 565.
    [23] W.D. Munz, D. Schulze and F.J.M. Hauzer, Surf. Coat. Technol. 50 (1992) 169
    [24] P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159.
    [25] H.M. Tung, “Effects of Bias and heat treatment on the microstructure and properties of ZrN film deposited by filter cathodic arc ion-plating”, 2004, master thesis National Tsing Wha University, R.O.C.
    [26] JCPD 35-0753.
    [27] L.E. Toth, Transition Metal Carbides and Nitrides, Academic press, New York, 1971, p. 188.
    [28] J.H. Huang, K.W. Lau, G.P. Yu, Surf. Coat. Technol., 191 (2005) 17.
    [29] A.J. Perry, Vficlav Valvoda, David Rafaja, Thin Solid Films, 214 (1992) 169.
    [30] E. Torok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
    [31] A.J. Perry, Thin Solid Films, 193 (1990) 463.
    [32] P. Jin, S. Maruno, Jpn. J. Appl. Phys. 30 (1991) 1463.
    [33] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol. 112 (1999) 108.
    [34] S. Groudeva-Zotova, R. Kaltofen, T. Sebald, Surf. Coat. Technol. 127 (2002) 144.
    [35] L. Hultman, J.-E. Sundgren, J.E. Greene, J. Appl. Phys. 78 (9) (1995) 5395.
    [36] J.E. Greene, J.-E. Sundgren, L Hultman, Appl. Phys. Lett. 67 (20) (1995) 2928.
    [37] B. R. Natarajan, A. H. Eltoukhy, J. E. Greene, T. L. Barr, Thin Solid Films 69 (1980) 201.
    [38] C.-H. Ma, J.-H. Huang, Haydn Chen, Thin Solid Films 446 (2004) 184
    [39] Y.M. Chen, G..P. Yu, J.H. Huang, Vacuum 66 (2002) 19
    [40] Chuan-Pu Liu, Heng-Ghieh Yang, Mater. Chem. Phys. 86 (2004) 370.
    [41] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, Thin Solid Films 197 (1991) 117.
    [42] Y.H. Cheng, B.K. Tay, S.P. Lau, J. Vac. Sci. Technol. A 20 (2002) 1270.
    [43] Yu-Wei Lin, “Effect of substrate bias on the structure and properties of nanocrystalline ZrN thin film deposited by unbalanced magnetron (UBM) sputtering” ,2003, master thesis National Tsing Wha University, R.O.C.
    [44] Y.H. Cheng, B.K. Tay, S.P. Lau, J. Vac. Sci. Technol. A 20 (2002) 1327
    [45] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 140 (2001) 206
    [46] N. Schell, J. Bottiger, W. Matz, J. Chevallier, Nucl. Instr. Meth. in Phys. Res. B 199 (2003) 133.
    [47] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197 (1991) 117
    [48] J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, J. Appl. Phys. 30 (1997) 5.
    [49] U.C. Oh, J.H. Je, J. Appl. Phys. 74 (3) (1993) 1692.
    [50] J.H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, J. Appl. Phys. 81 (9) (1997) 6126.
    [51] G. Abadias, Y.Y. Tse, Ph. Guérin, V. Pelosin, J. Appl. Phys. 99 (113519)(2006) 1.
    [52] C. Quaeyhaegens, G. Knuyt, J. D’Haen, L.M. Stals, Thin Solid Films 258 (1995) 170.
    [53] I. Petrov, A. Myers, J. E. Greene, J. R. Abelson, J. Vac. Sci. Tecchnol. A 12 (1994) 2846.
    [54] C.-S Shin, S. Rudenja, D. Gall, N. Hellgren, T.-Y. Lee, I. Petrov, J. E. Greene, J. Appl. Phys. 95 (2004) 356.
    [55] A.Rizzo, M.A. Signore, M.F. De Riccardis, L. Capodieci, D. Dimaio, T. Nocco, Thin Solid Films 515 (2007) 6665.
    [56] M.M. Larijani, N. Tabrizi, Sh. Norouzian, A. Jafari, S.Lahouti, H. Haj Hosseini, N. Afshari, Vacuum 81 (2006) 550.
    [57] S. Kodambaka, David L. Chopp, I. Petrov, J.E. Greene, Surf. Sci. 540 (2003) L611.
    [58] J. Narayan, P. Tiwari, X. Chen, R. Chowdhury, T. Zheleva, Appl. Phys. Lett. 61 (1992) 1290.
    [59] J. Narayan, U.S. Patent No. 5, 406, 123 (April 11, 1995).
    [60] J. Narayan, B.C. Larson, J. Appl. Phys.93 (2003) 278.
    [61] Ichimura, J. Narayan, Philos. Mag. A 72 (1995) 297.
    [62] Hideto Yanagisawa, Satoko Shinkai1, Katsutaka Sasaki1, Yoshio Abe, Akira Sakai, Shigeaki Zaima, Jpn. J. Appl. Phys. 44 (2005) 343.
    [63] Hideto Yanagisawa, Satoko Shinkai1, Katsutaka Sasaki1, Junpei Sakurai, Yoshio Abe, Akira Sakai, Shigeaki Zaima, J. Cryst. Growth 297 (2006) 80.
    [64] C.T. Chen, Y.C. Song, G..P. Yu, J.H. Huang, J. Mater. Eng. Perform. 7 (1998) 324.
    [65] H. Ljungcrantz, M. Odén, L. Hultman, J.E. Greene, J.-E. Sundgren, J. Appl. Phys. 80 (12) (1996) 6725.
    [66] V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Acta Mater. 49 (2001) 2713.
    [67] V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater. 50 (2002) 61.
    [68] N. Wang, Z. Wang, K.T. Aust, U. Erb, Acta Metall. Mater. 43 (1995) 519.
    [69] Jakob Schibtz, Karsten W. Jacobsen, Science 301 (2003) 1357.
    [70] C.H. Ma, J.H. Huang, Haydn Chen, Surf. Coat. Technol. 200 (2006) 3868
    [71] J.-D. Kamminga, Th. H. de Keijser, R. Delhez, E. J. Mittemeijer, Thin Solid Films 317 (1998) 169.
    [72] M. van Leeuwen, J.-D. Kamminga, E.J. Mittemeijer, J. Appl. Phys. 86 (1999) 1904.
    [73] J.-D. Kamminga, Th. H. de Keijser, R. Delhez, E. J. Mittemeijer, J. Appl. Phys. 88 (2000) 6332.
    [74] G. Abadias, Y. Y. Tse, J. Appl. Phys. 95 (2004) 2414.
    [75] D. Sander, Rep. Prog. Phys. 62 (1999) 809.
    [76] C. Quaeyhaegens, G. Knuyt, L.M. Stals, J. Vac. Sci. Technol. A 14(4) (1996) 2462.
    [77] Cevat Sarioglu, Surf. Coat. Technol. 201 (2006) 707.
    [78] S.Y. Chiou, B.H. Hwang, J. Phys. D. Appl. Phys. 31 (1998) 349.
    [79] A. Laor, L. Zevin, J. Pelleg, N. Croitoru, Thin Solid Films 232 (1993) 143.
    [80] A. J. Perry, Thin Solid Films, 193 (1990) 463.
    [81] A. Kumar, U. Welzel, E.J. Mittemeijer, J. Appl. Phys. 100 (2006) 114904.
    [82] A. Kumar, U. Welzel, E.J. Mittemeijer, J. Appl. Cryst. 39 (2006) 633.
    [83] C.H. Ma, J. H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73.
    [84] J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shin, S. A. Barnett, J. Appl. Phys. 72 (1992) 1805.
    [85] M. Marlo, V. Milman, Phys. Rev. B 62 (2000) 2899.
    [86] Jia-Yang Chen, Ge-Ping Yu, Jia-Hong Huang, Mater. Chem. Phys. 65 (2000) 310.
    [87] Wuu-Ling Pan, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol.110 (1998) 111.
    [88] Z. Soukup, J. Lhotka, J. Musil, D. Rafaja, Czechoslovak J. Phys. 50 (2000) No.5 655.
    [89] W. Lur, L.J. Chen, Appl. Phys. Lett. 54 (13) (1989) 1217.
    [90] S.J. Bull, P.R. Chalker, C.F. Ayres, and D.S. Rickerby: Mater. Sci. Eng. A 139 (1991) 71.
    [91] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Thin Solid Films 311 (1997) 138.
    [92] M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, Thin Solid Films 345 (1999) 263.
    [93] Jia-Huang Huang, Cheng-Hsin Ma, Haydn Chen, Surf. Coat. Technol. 200 (2006) 5937.
    [94] Jia-Huang Huang, Cheng-Hsin Ma, Haydn Chen, Surf. Coat. Technol. 201 (2006) 3199.
    [95] Jia-Huang Huang, Fan-Yi Ouyang, Ge-Ping Yu, Surf. Coat. Technol. 201 (2007) 7043.
    [96] V.N. Zhitomirsky, I. Grimberg, M.C. Joseph, R.L. Boxman, B.Z. Weiss, A. Matthews, S. Goldsmith, Surf. Coat. Technol. 108-109 (1998) 160.
    [97] J.H. Huang, Y.P. Tsai, G.P. Yu, Thin Solid Films 355-356 (1999) 440.
    [98] H. Yanagisawa, K. Sasaki, H. Miyake, Y. Abe, Jpn. J. Appl. Phys. 39 (2000) 5987.
    [99] H. Yanagisawa, K. Sasaki, H. Miyake, Y. Abe, Jpn. J. Appl. Phys. 40 (2001) 4193.
    [100] W. J. Chou, G.P. Yu, J.H. Huang, Corros. Sci. 43, (2001) 2023.
    [101] P. Scherrer, Gott. Nachr. 2 (1918) 98.
    [102] Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958), p.233.
    [103] G. G. Stoney, Proc. R. Soc. Lond. A82 (1909) 17.
    [104] Wenwu Zhang, Y. Lawrence Yao, I. C. Noyan, J. Manuf, Sci. Eng. 126 (2004) 10.
    [105] W. C. Oliver, G. M. Pharr, J. Mater. Res. 7(6) (1992) 1564.
    [106] E. S. Fisher and C. J. Renken, Phy. Rev., 135A (1994) 482.
    [107] Metals Handbook, Vol. 2 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th Ed., 1990, ASM International, Metals Park, OH, B493-79, B523-79, B550-79, B551-79
    [108] Metals Handbook, Vol. 13, 9th Ed., 1988, ASM International, Metals Park, OH, p.212.
    [109] Y.M. Chen, G.P. Yu, J.H. Huang, Corros. Sci. Sec. (2002) 846.
    [110] Y.M. Chen, G.P. Yu, J.H. Huang, Surf. Caot. Technol. 150 (2002) 309.
    [111] H.W. Wang, M.M. Stack, Surf. Coat. Technol. 105 (1998) 141.
    [112] CIE, Colorimetry, Tech. Rep., 15, Bureau Central de la CIE, 1971, p.1.
    [113] CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Tech. Rept. Supplement No. 2 to CIE publication No. 15, Bureau Central de la CIE, 1987,p1.
    [114] American Society for Testing Materials, Symposium on Color, ASTM, Philadelphia, PA, 1941, p.3.
    [115] JCPDS file 33-0397.
    [116] JCPDS file 89-4902.
    [117] M.H. Wang, “Effects of Nitrogen Rate on the Structure and Properties of Nanocrstalline ZrN Thin Film deposited by Unbalanced Magnetron Sputtering (UBMS)”, 2003, Master Thesis National Tsing Hua University, R.O.C.
    [118] Jia-Hong Huang, Kiang-Wee Lau, Ge-Ping Yu, Surf. Coat. Technol. 191(2005) 17.
    [119] Chun-Pu Liu, Heng-Ghieh Yang, Thin Solid Films 444 (2003) 11.
    [120] H.M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, J.-C. Parlebas, Appl. Surf. Sci. 200 (2002) 231.
    [121] S. Niyomsoan, W. Grant, D.L. Olson, B. Misha, Thin Solid Films 415 (2002) 187.
    [122] C.W. Chen, “The Structure and Properties of Nano-crystalline Zr(N,O) Thin Films on AISI 304 Stainless Steel:Effect of Film Thickness”, 2007, Master Thesis National Tsing Hua University, R.O.C.
    [123] A. Delblanc Bauer, M. Herranen, H. Ljungcrantz, J-O. Carlsson, J-E. Sundgren, Surf. Coat. Technol. 91 (1997) 208.
    [124] T. Young, Philos. Trans. R. Soc. (London), 9 (1805) 255.
    [125] E. Lugscheider, K. Bobzin, M. Moller, Thin Solid Films 355-356 (1999) 367.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE