研究生: |
李謀澂 |
---|---|
論文名稱: |
鐵基塊狀軟磁非晶及奈米晶合金開發 The Study of Fe-Based Bulk Amorphous and Nanocrystalline Soft Magnetic Alloys |
指導教授: | 金重勳 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 奈米晶 、非晶 、塊狀奈米晶 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的目的為開發大形塊狀奈米晶塊材、奈米晶厚帶及初淬奈米晶薄帶。而合金設計主要成分為本實驗室之前所開發的Fe-Y-B系三元塊狀非晶材料及FINEMET,仿效其成分進而添加不同元素研究其結晶行為,並研究其軟磁特性。
在塊狀奈米晶研究方面,Fe70Y4Nb2Cu2B22合金其非晶形成能力為直徑2mm,經由熱處理奈米晶化後析出bcc-Fe及F23B6,其Ms=1.4T、Hc=142A/m。在研究過程中發現Y及Ta的添加有抑制F23B6相生成的作用,且以Ag當晶種有助於提升其軟磁性質,在改變成分為Fe71Y5Ta1Ag1B22合金系後在奈米晶化後發現只有單相bcc-Fe析出,且其非晶形成能力可達3mm,且有著良好的軟磁性質。
在奈米晶厚帶方面,Fe71Y1Ta5Ag1B22合金厚度可達150μm,經由奈米晶化後其磁性質也有明顯地提升,且在此實驗中我們發現F23B6相為一軟磁相,此提供了我們另一個鐵基奈米晶材料的選擇。在初淬奈米晶薄帶方面,Ag的添加確實使得Fe77.4-xSi15.5NbxB7Ag0.1合金系在初淬狀態下就得到奈米晶薄帶,且經由去應力退火後其透磁率有明顯大幅增加的現象,最大可達27764(在1KHz之下)。結合較傳統奈米晶軟磁材料更為簡單的製程以及優良的軟磁性質,使得本論文中所開發出的新合金在工業材料的應用上更有吸引力及潛力。
The purposes of this research are to develop new Fe-based bulk nanocrystallines,
“thicker” nanocrystalline ribbons and as-quenched nanocrystalline ribbons. The
motivation and design of Fe-based alloys is based on the composition of the
FINEMET and Fe-Y-B alloy that were developed in our lab before, and doped
different elements to investigate the behavior of crystallization and soft magnetic
properties.
In bulk nanocrystallines(BNCs), Fe70Y4Nb2Cu2B22 alloy has the GFA up to 2mm in
diameter, and precipitates bcc-Fe and Fe23B6 phases during nanocrystallization. We
obtained the magnetic properties of Ms=1.4T and Hc=142A/m. In this research, we
found that Y and Ta can retard the precipitation of Fe23B6 phase and the doping of Ag
can enhance the soft magnetic properties. The composition, Fe71Y5Ta1Ag1B22, after
nanocrystallization, only one phase, bcc-Fe, was precipitated on the amorphous
matrix which, and its GFA can up to 3mm in diameter and also exhibits excellent soft
magnetic properties.
In “thicker” nanocrystalline ribbons, the Fe71Y1Ta5Ag1B22 alloy shows good GFA
to form ribbon with thickness of 150µm and exhibits good soft magnetic properties
after nanocrystallization process. We also discovered that Fe23B6 phase is also a soft
magnetic phase, therefore it provided us a new choice for new nanocrystalline
materials. In as-quenched nanocrystalline ribbons, we discovered that doping Ag
makes it possible for as-quenched nanocrystalline ribbon in Fe77.4-xSi15.5NbxB7Ag0.1
alloy system. After stress release annealing, the permeability of materials enhance
obviously, and can up to 27764(in 1KHz). With the combination of the easier
manufacture and excellent magnetic properties, these alloys are more attractive and
potential for industrial applications.
[1]. M.E. McHenry, M.A. Willard, D.E. Laughlin, Prog. in Mater. Sci. 44 (1999) 291.
[2]. P. Duwez, JAm Inst. Metall. Eng. 191 (1951) 765.
[3]. P. Duwez, R.H. Willens, W. Klement, J. Appl. Phys. 31 (1960) 1136.
[4]. S. Mader, A.S. Nowick, Appl. Phys. Lett. 7 (1965) 57.
[5]. Magnetic Glasses, edited by K. Moorjani and J.M.D. Coey, published by Elsevier Science Publishers B.V. 1984
[6]. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64 (1988) 6044.
[7]. Y. Yoshizawa, K. Yamauchi, T. Yamane, J. Appl. Phys. 64 (1988) 6047.
[8]. K. Suzuki, A. Makino, A. Inoue, J. Appl. Phys. 70 (1991) 6232
[9]. M.A. Willard, D.E. Laughlin, M.E. McHenry, J. Appl. Phys. 84 (1998) 6773.
[10]. 張世遠, 路權, 都有為等, 磁性材料基礎, 1988, 科學出版社, 81, 142-149.
[11]. G. Herzer, IEEE Transactions on Magnetics 26 (1990) 1397.
[12]. G. Herzer, J. Magn. Magn. Mater. 112 (1992) 258.
[13]. K. Suzuki, J.M. Cadogan, Phys. Rev. B 56 (1998) 2730.
[14]. K. Suzuki, G. Herzer, J.M. Cadogan, J. Magn. Magn. Mater. 177-181 (1998) 949.
[15]. R. Schäfer, J. Magn. Magn. Mater. 215-216 (2000) 652.
[16]. R. Schäfer, A. Hubert, G. Herzer, J. Appl. Phys. 69 (1991) 5325.
[17]. R. Matejko, P. Vojtanìk, R.S. Turtelli, H. Sassik, R. Grössinger, J. Magn. Magn. Mater. 215-216 (2000) 384.
[18]. Y. Yoshizawa, Scripta Mater. 44 (2001) 1321.
[19]. R. Varga, P. Vojtanìk, M. Konč, J. Magn. Magn. Mater. 215-216 (2000) 340.
[20]. L. Malkiński, A. Ślawska-Waniewska, Mater. Sci. Eng. A 226-228 (1997) 711.
[21]. A. Ślawska-Waniewska, M. Gutowski, H.K. Lachowicz, T. Kulik, H. Matyja, Phys. Rev. B 46 (1992) 14594.
[22]. V. Franco, C.F. Conde, A. Conde, L.F. Kiss, D. Kaptas, T. Kemeny, I. Vincze, J. Appl. Phys. 90 (2001) 1558.
[23]. B.J. Tate, B.S. Parmar, I. Todd, H.A. Davies, M.R.J. Gibbs, R.V. Major, J. Appl. Phys. 83 (1998) 6335.
[24]. I. Todd, B.J. Tate, H.A. Davies, M.R.J. Gibbs, D. Kendall, R.V. Major, J. Magn. Magn. Mater. 215-216 (2000) 272.
[25]. P.J. Warren, I. Todd, c A. Cerezo, M.R.J. Gibbs, D. Kendall, R.V. Major, Scripta Mater. 41 (1999) 1223.
[26]. O. Crisan, J.M. Le Breton, A. Jianu, J. Teillet, G. Filoti, J. Alloys and Compounds 262-263 (1997) 381
[27]. J.M. Borrego, A. Conde, I. Todd, M. Frost, H.A. Davies, M.R.J. Gibbs, J.S. Garitaonandia, J.M. Barandiarán, J.M. Grencèhe, J. Non-Cryst. Solids 287 (2001) 125.
[28]. T. Kulik, Mater. Sci. Eng. A 159 (1992) 95.
[29]. A. Hernando, T. Kulik, Phys. Rev. B 49 (1994) 7064.
[30]. K. Suzuki, J.M. Cadogan, V. Sahajwalla, A. Inoue, T. Masumoto, Mater. Sci. Eng. A 226-228 (1997) 554.
[31]. A. Makino, T. Hatanai, A. Inoue, T. Masumoto, Mater. Sci. Eng. A 226-228 (1997) 594.
[32]. A. Inoue, A.makino, Nanostructured Materials. 9 (1997) 403.
[33]. A. Makino, T. Bitoh, A. Kojima, A. Inoue, T. Masumoto, J. Magn. Magn. Mater. 215-216 (2000) 288.
[34]. T. Kemeny, D. Kaptas, L.F. Kiss, T. Pusztai, J. Balogh, I. Vincze, J. Magn. Magn. Mater. 215-216 (2000) 268.
[35]. S.N. Kane, A. Gupta, L. Kraus, P. Duhaj, J. Magn. Magn. Mater. 215-216 (2000) 375.
[36]. H. Chiriac, N. Lupu, J. Magn. Magn. Mater. 215-216 (2000) 394.
[37]. B. Idzikowski, J. Baszyński, I. Škorvánek, K.H. Müller, D. Eckert, J. Magn. Magn. Mater. 177-182 (1998) 941.
[38]. A. Grabias, M. Kopcewicz, B. Idzikowski, Nanostructured Mater. 12 (1999) 899.
[39]. M. Muller, H. Grahl, N. Mattern, B. Schnell, Mater. Sci. Eng. A 304-306 (2001) 353.
[40]. M.A. Willard, M.Q. Huang, D.E. Laughlin, M.E. Laughlin, J.O. Cross, V.G. Harris, C. Franchetti, J. Appl. Phys. 85 (1999) 4421.
[41]. H. Iwanabe, B. Lu, M.E. McHenry, D.E. Laughlin, J. Appl. Phys. 85 (1999) 4424.
[42]. A. Mitra, A.K. Panda, V. Rao, S.R. Singh, P. Ramachandrarao, Appl. Surf. Sci. 182 (2001) 321.
[43]. I. Škorvánek, C.G. Kim, J. Kováč, P. Švec, R. Sato-Turtelli, J. Magn. Magn. Mater. 215-216 (2000) 440.
[44]. H. Lee, Y.K. Kim, T.K. Kim, S.C. Yu, J. Magn. Magn. Mater. 215-216 (2000) 307.
[45]. J. Bigot, N. Lecaude, J.C. Perron, C. Milan, C. Ramiarinjaona, J.F. Riallan, J. Magn. Magn. Mater. 133 (1994) 299.
[46]. P. Marín, M. Vázquez, A. Hernando, J. Magn. Magn. Mater. 196-197 (1999) 221.
[47]. M. Kopcewicz, A. Grabias, P. Nowicki, Mater. Sci. Eng. A 226-228 (1997) 515.
[48]. M. Kopcewicz, A. Grabias, I. Škorvánek, J. Marcin, B. Idzikowski , J. Appl. Phys. 85 (1999) 4427.
[49]. D.S. Schmool, J.S. Garitaonandia, P. Gorria, J.M. Barandiarán, J. Magn. Magn. Mater. 177-181 (1998) 955.
[50]. E.H.C.P. Sinnecker, P. Panissod, I. Škorvánek, A.P. Guimarães, J. Magn. Magn. Mater. 242-245 (2002) 235.
[51]. X.Y. Mao, W.L. Gao, J.C. Tang, F. Xu, Y.W. Du, J. Magn. Magn. Mater. 271 (2004) 286.
[52]. P. Garcia Tello, J. Gonzalez, J.M. Blanco, R. Valenzuela, J. Appl. Phys. 87 (2000) 7112.
[53]. H.C. Kim, S.C. Yu, C.G. Kim, H.S. Han, W.K. Cho, Mater. Sci. Eng. A 304-306 (2001) 1030.
[54]. R. Andrejco, R. Matejko, R. Varge, P. Vojtaník, P. Agudo, m. Vázquez, H. Sassik, R. Grössinger, J. Magn. Magn. Mater. 215-216 (2000) 381.
[55]. A. Makino, K. Suzuki, A. Inoue, Mat. Trans. JIM 32 (1991) 551.
[56]. A. Makino, A. Inoue, T, Masumoto, Mat. Trans. JIM 36 (1995) 924.
[57]. Y. Yoshizawa, K. Yamauchi, Mat. Trans. JIM 31 (1990) 307.
[58]. C.Y. Lin, H.Y. Tien, T.S. Chin, Appl. Phys. Lett. 86 (2005) 162501.
[59]. A. Inoue, Mater. Trans. Japan. Inst. Metals 36 (1995) 886.
[60]. A. Inoue, Mater. Sci. Eng. A226-A228 (1997) 357.
[61]. A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum, 269-272
(1998) 855
[62]. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans. 29A,
(1998) 1779.
[63]. A. Inoue, “Bulk Amorphous Alloys”, Trans Tech Publications,
Zurich, 1999.
[64]. A. Inoue, Acta Mater. 48 (2000) 279.
[65]. Binary alloy phase diagrams, 2nd edition by ASM International. 1996, in USA.
[66]. K. Hono, K. Hiraga, Q. Wang, A. Inoue, T. Sakurai, Acta Metal. 40 (1992) 3127
[67]. 王一禾、楊膺善,非晶態合金,冶金工業出版社,1989。
[68]. A. Inoue and Rae Eun Park, Mater. Trans. JIM 37 (1996) 1715.
[69]. 黃森煥,金重勳,快速凝固法研製稀土-過渡元素合金及其基本
特性探討,國立清華大學博士論文,中華民國八十年七月。
[70]. R.C. Ruhl, Mater. Sci. Eng. 1 (1967) 313.
[71]. M.R. Bennett, J.G. Wright, Phys. Status Solidi (a) 13 (1972) 135.
[72]. P.K. Leung, J.G. Wright, Phil. Mag. 30 (1974) 995.
[73]. R. Alben, J.J. Becker, M.C. Chi, J. Appl. Phys. 49 (1978) 1653
[74]. G. Herzer, Scripta Mater. 33 (1995) 1741.
[75]. A. Hernando, M. Vázquez, T. Kulik, C. Prados, Phys. Rev. B 51 (1995) 3581.
[76]. K. Suzuki, J.M. Cadogen, J. Appl. Phys. 85 (1999) 4400.
[77]. W. Zhang A. Inoue, Appl. Phys. Lett. 80, (2002) 1610.
[78]. A. Inoue, B. L. Shen, T. Ohsuna, Mater. Trans. 43, (2002) 2337.
[79]. K. Hono, D.H. Ping, Mater. Sci. Eng. A 304-306 (2001) 81.
[80]. Y.R. Zhang, R.V. Ramanujan, J. Alloy. Compd. 403 (2005) 197.
[81]. Y. Yoshizawa, S. Fujii, J. Magn. Magn. Mater. 290-291 (2005) 1543.
[82]. D.H. Ping, K. Hono, H. Kanekiyo, S. Hirosawa, Acta Mater. 47 (1999) 4641.
[83]. M. Widom, M. Mihalkovic, J. Mater. Res. 20 (2005) 237.
[84]. B. Lohwongwatana, J. Schroers, W.L. Johnson, Phys. Rev. Lett. 96 (2006) 075503.
[85]. B. Idzikowski. A. Szajek, J.M. Greneche, J. Kovač, Appl. Phys. Lett. 85 (2004) 1392.