簡易檢索 / 詳目顯示

研究生: 邱柏榮
Chiu, Po-Jung
論文名稱: 以正多面體之交集所表示的多面體
Polyhedra Expressed as the Intersection of Platonic Solids
指導教授: 全任重
Chuan, Jen-Chung
口試委員: 李明恭
李華倫
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 34
中文關鍵詞: 多面體
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A polyhedral compound is an arrangement of polyhedra sharing a common center. Given a compound, consequently there’s a core, i.e. the intersection of the compound. Conversely, if we have the core and a collection of platonic solids, the arrangement of the compound is uniquely determined. Compounds of platonic solids are especially interesting. There are 15 well-known compounds of platonic solids. In this paper, we discussed the relationship of edges and volumes between the core and the components of the corresponding compound.


    Abstract 2 Chapter 1. Introduction 4 Basic Definition 4 1. Polyhedral Compound 4 2. Core 4 Chapter 2. Compounds of Two Platonic Solids 5 Edge Length and Volume 5 1. Octahedron as the Intersection of Two Tetrahedra 6 2. Cuboctahedron as the Intersection of Cube and Octahedron 7 3. Icosidodecahedron as the Intersection of Dodecahedron and Icosahedron 8 4. Truncated Tetrahedron as the Intersection of Two Tetrahedra 9 5. Truncated Cube as the Intersection of Cube and Octahedron 11 6. Truncated Octahedron as the Intersection of Octahedron and Cube 12 7. Truncated Dodecahedron as the Intersection of Dodecahedron and Icosahedron 14 8. Truncated Icosahedron as the Intersection of Icosahedron and Dodecahedron 17 Chapter 3. Compounds of Five Platonic Solids 20 Edge Length and Volume 20 1. Small Rhombicuboctahedron as the Intersection of Four Cubes and an Octahedron 20 2. Great Rhombicuboctahedron as the Intersection of Four Cubes and an Octahedron 22 3. Icosahedron as the Intersection of Five Tetrahedra 24 4. Icosahedron as the Intersection of Five Octahedra 25 5. Rhombic Triacontahedron as the Intersection of Five Cubes 26 Chapter 4. Compounds of Seven Platonic Solids 28 Edge Length and Volume 28 1. Small Rhombicosidodecahedron as the Intersection of a Dodecahedron, an Icosahedron, and Five Cubes 28 2. Great Rhombicosidodecahedron as the Intersection of a Dodecahedron, an Icosahedron, and Five Cubes 31 Chapter 5. Reference 34

    Weisstein, Eric W. Cube. <http://mathworld.wolfram.com/Cube.html>.
    —. Decagon. <http://mathworld.wolfram.com/Decagon.html>.
    —. Dodecahedron. <http://mathworld.wolfram.com/Dodecahedron.html>.
    —. Great Rhombicosidodecahedron. <http://mathworld.wolfram.com/GreatRhombicosidodecahedron.html>.
    —. Great Rhombicuboctahedron. <http://mathworld.wolfram.com/GreatRhombicuboctahedron.html>.
    —. Icosahedron. <http://mathworld.wolfram.com/Icosahedron.html>.
    —. Octagon. <http://mathworld.wolfram.com/Octagon.html>.
    —. Pentagon. <http://mathworld.wolfram.com/Pentagon.html>.
    —. Platonic Solid. <http://mathworld.wolfram.com/PlatonicSolid.html>.
    —. Rhombic Triacontahedron. <http://mathworld.wolfram.com/RhombicTriacontahedron.html>.
    —. Small Rhombicosidodecahedron . <http://mathworld.wolfram.com/SmallRhombicosidodecahedron.html>.
    —. Small Rhombicuboctahedron. <http://mathworld.wolfram.com/SmallRhombicuboctahedron.html>.
    —. Tetrahedorn. <http://mathworld.wolfram.com/Tetrahedron.html>.
    —. Truncated Dodecahedron. <http://mathworld.wolfram.com/TruncatedDodecahedron.html>.
    —. Truncated Icosahedron. <http://mathworld.wolfram.com/TruncatedIcosahedron.html>.
    —. Truncated Octahedron. <http://mathworld.wolfram.com/TruncatedOctahedron.html>.
    Wolfram. Rhombic Triacontahedron. <http://www.wolframalpha.com/input/?i=Rhombic+Triacontahedron>.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE