研究生: |
蔡惠喻 Huei-Yu Tsai |
---|---|
論文名稱: |
自動指紋辨識系統 Automatic Fingerprint Identification System |
指導教授: |
陳朝欽
Chaur-Chin Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 31 |
中文關鍵詞: | 指紋 、特徵點 、辨識 |
外文關鍵詞: | fingerprint, minutiae, identification |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
好幾年來指紋一直被廣泛地用於辨識個人的身份。雖然現在發展不少其它的生物技術,但是指紋資料庫已經在很多國家行之有年,這也是為什麼指紋優於其他生物技術。然而在如此龐大資料庫裡辨識個人身份是困難且耗時間的,因此在這篇論文中,我們實做一套自動指紋辨識系統,它可以分成這些步驟:影像前處理、特徵點擷取、指紋分類和指紋比對。在第一個步驟中,Gabor濾波器用於加強指紋的紋路並減少雜訊,接著擷取特徵點“Endings”和“Bifurcations”。在指紋分類的步驟中,指紋可以分為五大類:(1) Arch、(2) Right Loop、(3) Left Loop、(4) Whorl和(5) Others,這是為了能夠減少指紋比對的時間。最後,我們可以藉由比對兩個指紋的特徵點去計算出比對分數來表示相似度。
這套自動指紋辨識系統測試在六個資料庫上,其中Rindex28和Lindex101這兩個資料庫是從PRIP LAB at NTHU收集得來,另外DB1、DB2、DB3和DB4這四個資料庫由FVC2000提供。此系統執行於Windows XP環境的電腦上(Pentium 4 3.00GHz和1 GB SDRAM)。我們實驗得到的結果分別為100% (112/112), 93.32% (377/404), 97.50% (78/80), 92.50% (74/80), 86.25(69/80) and 92.50% (74/80)。
Fingerprints have been widely used as personal identification for many years. Although there are several biometric techniques recently, fingerprint still has its own advantage due to large databases which may be established for many years. However, personal identification in such a large database is difficult and time consuming. In this thesis, we implement an automatic fingerprint identification system (AFIS) with these stages: image pre-processing, minutiae extraction, fingerprint classification and fingerprint matching. In the first stage, Gabor filter is used to enhance the furrow and to reduce the noise on the fingerprint image. Then, minutiae (ridge endings and bifurcations) are detected for matching. The stage of fingerprint classification is to reduce the matching time. A fingerprint is classified into one of the five types: Arch, Right Loop, Left Loop, Whorl and Others. In the final stage, a matching score is computed by comparing minutiae patterns between two fingerprint images.
The AFIS is tested on 6 databases of fingerprint images, such as Rindex28, Lindex101 from PRIP Lab at NTHU and DB1, DB2, DB3, DB4 provided by FVC2000, on a PC with Pentium 4 3.00GHz CPU and 1 GB SDRAM running Windows XP. Based on the criterion of reaching top 3 of the matching scores, the identification rates are 100% (112/112), 93.32% (377/404), 97.50% (78/80), 92.50% (74/80), 86.25(69/80) and 92.50% (74/80) by testing the aforementioned fingerprint image databases, respectively.
[Baz00] A.M. Bazen, and S.H. Gerez, “Directional Field Computation for Fingerprints Based on the Principal Component Analysis of Local Gradients”, In Proc. ProRISC2000 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, November 2000.
[Baz01] A.M. Bazen and S.H. Gerez, “Segmentation of Fingerprint Images”, In Proc. ProRISC2001 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, November 2001.
[Cha03] C.Y. Chang, “Automatic Fingerprint Verification System”, M.S. Thesis, National Tsing Hua University, June 2003.
[Che02] Y.Y. Chen, “Fingerprint Image Classification Based on Singular Points”, M.S. Thesis, National Tsing Hua University, June 2002.
[Chi05] S.S. Chikkerur, “Online Fingerprint Verification System,” M.S. thesis, State
University of New York at Buffalo, 2005.
[Con02] V. Conti, G. Pilato, S. Vitabile, F. Sorbello, “Verification of Ink-on-paper Fingerprints by Using Image Processing Techniques and a New Matching Operator”, VIII Convegno AI*IA, Siena 10-13, 594-601, Sept. 2002.
[Dau85] J.G. Daugman, “Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters,” J. Optical Soc. Amer. A, Vol. 2, pp. 1,160-1,169, 1985.
[Esp02] V. Espinosa-Duro, “Minutiae detection algorithm for fingerprint recognition”, IEEE Aerospace and Electronics Systems Magazine, Vol. 17, No. 3, 7-10, 2002.
[Gal92] F. Galton, ” Finger Prints”, Macmillan, London, 1892.
[Gon92] R.C. Gonzalez and R.E. Woods, “Digital Image Processing”, Reading, MA: Addison-Wesley Publishing Company, 3rd Edition, 1992.
[Hen06] H. Hentous, F. Benhammadi, M. Aissani, and K. Beghad-Bey, “Fingerprint Matching Based on Minutiae Covering Zones”, ISCC, 233-238, 2006.
[Hon98] L. Hong, Y. Wan, and A. Jain, “Fingerprint Image Enhancement: Algorithm and Performance Evaluation”, IEEE Transactions on Pattern Analysis Machine Intelligence, Vol. 20, No. 8, 777-789, 1998.
[Hua04] P.H. Huang, “Implementation For AFIS”, M.S. Thesis, National Tsing Hua University, June 2004.
[Jai91] A.K. Jain and F. Farrokhnia, “Unsupervised Texture Segmentation Using Gabor Filters,” Pattern Recognition, vol. 24, no. 12, pp. 1,167- 1,186, 1991.
[Kar96] K. Karu, and A.K. Jain, “Fingerprint Classification”, Pattern Recognition, Vol. 29, No. 3, 284-404, 1996.
[Ko02] T. Ko, “Fingerprint enhancement by spectral analysis techniques”, The Proceedings of Applies Imagery Pattern Recognition Workshop, 133-139, 2002.
[Li07] J. Li, S. Tulyakov, and V. Govindaraju, “Verifying Fingerprint Match by Local Correlation Methods”, IEEE Conference on Biometrics: Theory, Algorithms, and Systems, Washington D.C., 2007.
[Mai02] D. Maio, D. maltoni, R. Cappelli, J.L. Wayman, and A.K. Jain, “FVC2000: Fingerprint Verification Competition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 3, 2002.
[Mal03] D. Maltoni, D. Maio, Anil K. Jain and S. Prabhakar, Handbook of Fingerprint Recognition, Springer-Verlag, 2003.
[Nac84] N.J. Naccache and P. Shinghal, “An Investigation into the Skeletonization Approach of Hilditch”, Pattern Recognition, Vol. 17, No. 3, 279-284, 1984.
[Rat95] N. K. Ratha, S. Chen, and A. K. Jain, “Adaptive Flow Orientation-based Feature Extraction in Fingerprint Images”, Pattern Recognition, Vol. 28, No. 11, pp. 1,657-1,672, 1995.
[Sen01] A.Senior, “A Combination Fingerprint Classifier”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 10, 2001
[Yu06] H.H. Yu, “Automatic Fingerprint Matching System”, M.S. Thesis, National Tsing Hua University, June 2006.
[Zor01] D. S. Zorita, J.O. Garcia, S. C. Lianas, and J. G. Rodriguez, “Minutiae extraction scheme for fingerprint recognition systems”, International Conference on Image Processing, Vol. 2, 254-257, 2