簡易檢索 / 詳目顯示

研究生: 曾裕騰
Tseng, Yu Teng
論文名稱: 氮化鋁鎵/氮化鎵之異質接面雙極性電晶體電流增益改善之研究
Investigation of Current Gain Improvement of AlGaN/GaN Heterojunction Bipolar Transistors
指導教授: 鄭克勇
Cheng, Keh Yung
口試委員: 劉文超
Liu, Wen Chau
黃智方
Huang, Chih Fang
徐碩鴻
Hsu, Shuo Hung
綦振瀛
Chyi, Jen Inn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 69
中文關鍵詞: 氮化鋁鎵異質接面雙極性電晶體
外文關鍵詞: AlGaN, Heterojunction Bipolar Transistors
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鋁鎵/氮化鎵的單異質接面雙極性電晶體在不使用複雜的二次成長射極之下,在本論文中成功的發展出來,並且透過二次離子質譜儀之分析發現在780°C的電漿輔助分子束磊晶成長下,依然會有嚴重的鋁以及矽之同步擴散現象存在於氮化鋁鎵/氮化鎵的異質接面上,鋁跟矽之摻雜分佈改變了能帶的形狀導致氮化鋁鎵/氮化鎵共射極電流增益嚴重地被限制並使之低於0.8,一旦將未摻雜的氮化鎵間隔層放在基極-射極介面上可以有效的和緩鋁跟矽的同步擴散現象。在氮化鋁鎵/氮化鎵的單異質介接雙極性電晶體嵌入20奈米的未摻雜氮化鎵間隔層,可將共射極電流增益提高到2,其共射極電流增益高於沒有間隔層的結構2.5倍。在量測期間也發現在射極周圍的光激發現象,並且在論文中做了完整的討論。
    透過分析及比較高解析X-光電子能譜,可以得知其峰值的位移量顯示了表面上產生了氮的空位缺陷,導致形成一層N型氮化鎵薄膜,進而增加了達成P型氮化鎵的低歐姆接觸阻值的困難性。此外在使用N型的歐姆接觸(鈦/鋁/鈦/金)在P型氮化鎵上又得到了較低之電阻值,再度證明了表面損壞的原因就是感應耦合電漿蝕刻在P型氮化鎵表面上產生了一層N型氮化鎵的薄膜。為了解決被感應耦合電漿蝕刻造成表面損壞的情形,本論文使用數位蝕刻的技術來平衡樣品表面氮與鎵的比例,同樣地透過高解析X-光電子能譜儀取得氮與鎵的比例,而得知在經過蝕刻過後的表面其比例從1降至0.706,但經由數位蝕刻的方式可使得氮與鎵的比例從0.706升至0.877,更可以降低其表面接觸的阻值達到23%之多。


    AlGaN/GaN single heterojunction bipolar transistors (SHBTs) without using regrown emitter junction are demonstrated. Secondary ion mass spectroscopy analysis shows that a severe co-diffusion of Al and Si exists in AlGaN/GaN heterostructures grown at 780°C by plasma-assisted molecular beam epitaxy. The altered composition and doping profiles greatly degrade the common-emitter current gain of AlGaN/GaN HBTs to ≤ 0.8. A GaN spacer layer is inserted at the emitter-base junction to alleviate this problem. In an AlGaN/GaN HBT structure inserted with a 20 nm unintentionally doped GaN spacer layer, a current gain β about 2 is achieved. The current gain is improved about 2.5 times larger than the structure without the spacer layer. The light-emitting phenomenon is also demonstrated and investigated in this article.
    Using high resolution X-ray photoelectron spectroscopy (XPS), the surface binding energy and composition ratio of Ga and N are determined. The XPS peak shift in dry etching processed p-type GaN represents the existence of an n-type thin layer on the surface originated from nitrogen vacancies. This extra surface layer makes the formation of a low contact resistance difficult. On the contrary, a lower contact resistance is obtained when an n-type metal contact (Ti/Ai/Ti/Au) stacks is used on the etched p-type GaN surface, which confirms that the source of surface damage is coming from surface nitrogen vacancies. In order to overcome the surface damage problem in the base region, a digital etching technique is developed. The mole fraction ratio of N/Ga measured by high resolution XPS decreases from 1 to 0.706 after the conventional base-mesa process. Applying the digital etching technique to the base surface processing, the N/Ga ratio increases from 0.706 to 0.877. Besides, the base contact resistance can be reduced about 23% than the sample treated with inductively coupled plasma etching.

    CHAPTER 1 INTRODUCTION 1 CHAPTER 2 Fabrication of AlGaN/GaN Heterojunction Bipolar Transistors 6 2.1 Basic Structure of AlGaN/GaN Heterojunction Bipolar Transistors 6 2.2 HBT Photolithograph Mask Designs 10 2.2.1 Analysis of the Emitter Size 10 2.3 Device Fabrication Processes 14 2.3.1 AlGaN/GaN HBT Process Flow 14 2.3.2 Base/Collector Mesa Etching 16 2.3.3 Analysis of the Emitter/Collector Metal Contact 25 2.3.4 Analysis of the Base Metal Contact 27 CHAPTER 3 Al/Si Co-diffusion on Current Gain Deterioration 34 3.1 Structures and Fabrication of AlGaN/GaN HBTs 34 3.2 Discovery of Al/Si Co-diffusion and Current Gain Deterioration 37 3.3 Electroluminescence from AlGaN/GaN HBTs 46 CHAPTER 4 Surface Treatment of the Base Region Using Digital Etching 49 4.1 High Base Contact Resistance Problems in p-type GaN Layer 49 4.2 Nitrogen Vacancies on Etched p-type GaN Surface 52 4.3 Improvement of Surface Integrity Using Digital Etching 57 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 64 5.1 Conclusions 64 5.2 Future Work 66 REFERENCES 67

    [1] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High power microwave GaN/AlGaN HEMT’s on silicon carbide,” in 56th Device Res. Conf. Dig. (Late News), 1998.
    [2] Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, “High Al-content AlGaN/GaN MODFET’s for ultrahigh performance,” IEEE Electron Device Lett., Vol. 19, pp. 50-53, 1998.
    [3] Y. C. Lee, Yun Zhang, H. J. Kim, Suk Choi, Zachary Lochner, R. D. Dupuis, J. H. Ryou, and S. C. Shen, “High-Current-Gain Direct-Growth GaN/InGaN Double Heterojunction Bipolar Transistors,” IEEE Electron Device Lett., Vol. 57, pp. 2964-2969, 2010.
    [4] S. C. Shen, R. D. Dupuis, Zachery Lochner, Y. C. Lee, T. T. Kao, Yun Zhang, H. J. Kim, and J. H. Ryou, “Working toward high-power GaN/InGaN heterojunction bipolar transistors,” Semiconductor Science and Technology, Vol. 28, pp. 074025, 2013.
    [5] B. F. Chu-Kung, C. H. Wu, G. Walter, M. Feng, N. Holonyak Jr., T. Chung, J.-H. Ryou, and R. D. Dupuis, “Modulation of high current gain (β > 49) light-emitting InGaN/GaN heterojunction bipolar transistors,” Appl. Phys. Lett., Vol. 91, pp. 232114, 2007.
    [6] Huili Xing, Prashant M. Chavarkar, Stacia Keller, Steven P. DenBaars, and Umesh K. Mishra, “Very High Voltage Operation (>330 V) With High Current Gain of AlGaN/GaN HBTs,” IEEE Electron Device Lett., Vol. 24, pp. 141-143, 2003.
    [7] P. Kozodoy, H. Xing, S. P. DenBaars, U. K. Mishra, A. Saxler, R. Perrin, S. Elhamri, and W. C. Mitchel, “Heavy doping effects in Mg-doped GaN,” J. Appl. Phys., Vol. 87, pp. 1832-1835, 2000.
    [8] J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, “Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor,” Appl. Phys. Lett., Vol. 74, pp. 2702-2704, 1999.
    [9] D. M. Keogh, P. M. Asbeck, T. Chung, J. Limb, D. Yoo, J.-H. Ryou, W. Lee, S.-C. Shen and R.D. Dupuis, “High current gain InGaN/GaN HBTs with 300 °C operating temperature,” Electron. Lett., Vol. 42, pp. 661-663, May 2006.
    [10] T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gains obtained by InGaN/GaN double heterojunction bipolar transistors with p-InGaN base,” Appl. Phys. Lett., Vol. 79, pp. 380-381, 2001.
    [11] T. Makimoto, K. Kumakura, and N. Kobayashi, “Extrinsic base regrowth of p-InGaN for Npn-type GaN/InGaN heterojunction bipolar transistors,” Jpn. J. Appl. Phys., Vol. 43, pp. 1922-1924, 2004.
    [12] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN Heterojunction Bipolar Transistor,” IEEE Electron Device Lett., Vol. 20, pp. 277-279, 1999.
    [13] Ajay Raman, Christophe A. Hurni, James S. Speck, and Umesh K. Mishra, “AlGaN/GaN heterojunction bipolar transistors by ammonia molecular beam epitaxy,” Phys. Status Solidi A., Vol. 209, pp. 216-220, 2012.
    [14] R. G. Wilson, S. J. Pearton, C. R. Abernathy and J. M. Zavada, “Thermal stability of implanted dopants in GaN,” Appl. Phys. Lett., Vol. 66, pp. 2238-2240, 1995.
    [15] Yoshiro Hirayama, Yoshiji Horikoshi, and Hiroshi Okamoto, “Interdiffusion of Al and Ga in Si-Implanted GaAs-AlAs Superlattices,” Jpn. J. Appl. Phys., Vol. 23, pp. 1568-1572, 1984.
    [16] D. Buttari, S. Heikman, S. Keller, and U. K. Mishra, “Digital Etching for Highly Reproducible Low Damage Gate Recessing on AlGaN/GaN HEMTs,” IEEE Lester Eastman Conference on High Performance Devices, Aug. 2002.
    [17] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., Vol. 86, pp. 4491-4497, 1999.
    [18] Agostino Zoroddu, Fabio Bernardini, Paolo Ruggerone, and Vincenzo Fiorentini, “First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory,” Phys. Rev. B., Vol. 64, pp. 045208, 2001.
    [19] K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence,” Appl. Phys. Lett., Vol. 86, pp. 052105, 2005.
    [20] S. C. Shen, Y. C. Lee, H. J. Kim, Yun Zhang, Suk Choi, R. D. Dupuis, and J. H. Ryou, “Surface Leakage in GaN/InGaN Double Heterojunction Bipolar Transistors,” IEEE Electron Device Lett., Vol. 30, pp. 1119-1121, 2009.
    [21] D. J. Dewsnip, J. W. Orton, D. E. Lacklison, L. Flannery, A. V. Andrianov, I. Harrison, S. E. Hooperd, T. S. Chengd, C. T. Foxond, S. N. Novikov, B. Y. Ber, and Y. A. Kudriavtsev,” MBE growth and characterization of magnesium-doped gallium nitride” Semiconductor Science and Technology, Vol. 13, pp. 927, 1998.
    [22] W. Liu, and J. S. Harris, “Diode Ideality Factor for Surface Recombination Current in AlGaAdGaAs Heterojunction Bipolar Transistors,” IEEE Transactions on Electron Devices, Vol. 39, pp. 2726-2732, 1992.
    [23] B. J. Skromme, and G. L. Martinez, Mater. Res. Soc. Symp. Proc. 5S1, W9.8 (2000)
    [24] B. J. Skromme, G. L. Martinez, L. Krasnobaev, and D. B. Poker, Mater. Res. Soc. Symp. Proc. 639, G11.39 (2001)
    [25] K. M. Chang, C. C. Cheng, and J. Y. Chu, “The Variation of Ohmic Contacts and Surface Characteristics on p-GaN Induced by Reactive Ion Etching,” J. Electrochem. Soc., Vol.149, pp. G367-G369, 2002.
    [26] Y. J. Lin, Q. Ker, C. Y. Ho, H. C. Chang, and F. T. Chien, “Nitrogen-vacancy-related defects and Fermi level pinning in n-GaN Schottky diodes,” Journal of Applied Physics, Vol. 94, pp. 1819, 2003.
    [27] D. Selvanathan, F. M. Mohammed, J. O. Bae, I. Adesida, and Katherine H. A. Bogart, “Investigation of surface treatment schemes on n-type GaN and Al0.20Ga0.80N,” J. Vac. Sci. Technol. B, Vol. 23, pp. 2538, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE