簡易檢索 / 詳目顯示

研究生: 廖秉彥
論文名稱: 利用晶種還原法製備銀奈米粒子研究
指導教授: 林滄浪
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 107
中文關鍵詞: 晶種還原法銀奈米平板銀奈米棒銀奈米線銀奈米立方體
外文關鍵詞: Seed-mediated growth method, Silver nanoplates, Silver nanorods, Silver nanowires, Silver nanocubes
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為利用晶種還原法(seed-mediate growth method)製備銀奈米結構粒子。製備方式主要分為兩個主要步驟,第一步先製備3~5 nm之銀奈米粒子作為晶種,第二步再將晶種加入成長液中當作聚集點反應成長。晶種製備主要用含包覆劑(AOT)與銀離子(AgNO3)之溶液,加入強還原劑NaBH4還原形成銀奈米顆粒;成長液則包含銀離子、弱還原劑(L-ascorbic acid)與界面活性劑(CTAB),最後加入NaOH調整溶液酸鹼值。研究中主要以紫外-可見光光譜與掃描式電子顯微鏡探討分析改變反應參數對產物的影響。研究結果發,晶種還原法所得產物的形貌大小分佈不均勻,主要產物為三角形、六角形奈米平板與部分奈米棒(依實驗條件不同則比例不同)。晶種添加量的減少會使得光譜呈現紅位移且產物中出現較多且長寬比(aspect ratio)較大之銀奈米棒;反應溫度的升高也會使得產物奈米棒的長寬比變小;NaOH的添加量則存在兩個臨界值,第一是趨動成長反應的臨界值,第二則是形成奈米棒與奈米線的臨界值;成長液中CTAB濃度則在晶種添加量較少時會有較明顯之影響,CTAB濃度過低,則會形成不規則形狀之奈米顆粒,而結果中也看到某些低濃度CTAB條件下(約低於20 mM)會有少數微米大小之立方體的形成。另外,我們也探討了利用加熱過之晶種做成長反應,結果發現會成長出尺度相當大之奈米平板。


    In this study, silver nanoparticles were synthesized by seed-mediated growth method, following the procedures described by Jana et al. In seed-mediated growth method, it starts with the synthesis of silver nano-seeds using chemical reduction of a silver salt with a strong reducing agent such as sodium borohydride in the presence of AOT as a capping agent to prevent particle growth. The synthesized silver nano-seeds are 3~5 nm in diameter and served as the seeds to grow more anisotropic nanostructures. These silver nano-seeds were added in the growth solution containing more silver salt, ascorbic acid (weak reducing agent) and cetyltrimethylammonium bromide (CTAB). The effects of various processing parameters on the morphology and uniformity of silver nanoparticles were investigated by UV-Vis spectroscopy and scanning electron microscopy. Preparation of silver nanoparticles by seed-mediated methods generally yielded a wide range of sizes and morphologies. At lower nano-seed concentration, longer silver nanorods can be produced. Increase the reaction temperature led to a decrease of aspect ratio of nanorods. When the pH of solution was increased by adding NaOH, the reducing power of ascorbic acid was increased. The high pH of the reaction solution caused short nanorods to form and the low pH might induce the formation of longer nanowires. But if the pH is too low, silver ions will not be reduced. The concentration of CTAB also has significant effect for low seed concentration cases. When the concentration of CTAB was vary law (a few mM), small irregular silver nanoparticles would be synthesized. Few cubic particles of micron size were synthesized at CTAB concentrations around 20 mM. On the other hand, nano-seeds annealed at higher temperature were also used and quite large silver nanoplates were synthesized.

    摘要 誌謝辭 第一章 序論 1.1 研究動機 1.2 研究目的 第二章 文獻回顧 2.1 Polyol Process備銀奈米結構 2.2 光還原法製備金、銀奈米結構粒子 2.3 晶種還原法製備金、銀奈米結構粒子 第三章 實驗方法 3.1 實驗藥品 3.2 實驗規劃 3.3 實驗儀器 3.3.1 紫外線-可見光光譜儀(UV-visible spectroscopy) 3.3.2 掃描式電子顯微鏡(SEM) 第四章 實驗結果與討論 4.1 UV-visible吸收光譜分析 4.1.1 不同晶種添加量之UV-visible吸收光譜分析 4.1.2 不同溫度製備奈米棒所得產物之UV-visible吸收光譜分析 4.1.3 不同晶種使用時機(晶種製備後不同時間進行成長反應)所得產物之UV-visible吸收光譜分析 4.1.4 不同濃度(20、40、60、80、100 mM)之CTAB成長液,所得產物之UV-visible吸收光譜分析 4.1.5 不同濃度(0、4、8、12、16、20 mM)之CTAB成長液,所得產物之UV-visible吸收光譜分析 4.1.6 添加不同溫度下所製備之晶種做成長反應,所得產物之UV-visible吸收光譜分析 4.1.7 添加不同熱處理後之晶種做成長反應,所得產物之UV-visible吸收光譜分析 4.1.8 反應產物重新分散於水中後(洗掉包覆劑CTAB),所得之UV-visible吸收光譜分析 4.2 掃描式電子顯微鏡(SEM)分析 4.2.1 合成產物之銀粒子外觀結構性質-各形貌結構之粒子 4.2.2 合成產物之銀粒子外觀結構性質-奈米平板(Nano-Plate)側面 4.2.3 合成產物之銀粒子外觀結構性質-奈米棒(Nano-Rod 4.2.4 合成產物之銀粒子外觀結構性質-奈米粒方體 (Nano-Cubic 4.2.5 不同晶種添加量之SEM分析 4.3 UV-visible吸收光譜及SEM比較對照分析 4.3.1 添加90 ℃熱處理後之晶種所得產物UV-visible吸收光譜及SEM分析(與未熱處理之晶種比較)- 4.3.2 不同反應溫度之UV-visible吸收光譜及SEM分析 4.3.3 不同NaOH添加量所得產物UV-visible光譜及SEM分析 第五章 結論 參考文獻 附錄

    1.D.M.-K. Lam ,B.W. Rossiter , Sci. Am. 1991, 265 , 80
    2.L.N. Lewis, Chem. Rev. 1993, 93, 2693
    3.S.R. Nicewarner-pena et al., Science 2001, 294, 137
    4.S.A. Maier et al. , Adv. Mater. 2001, 13, 1501
    5.P.V. kamat, J. phys. Chem. B, 2002, 106, 7729
    6.M.-P. Pileni, Adv. Funct. Mater. 2001, 11, 323
    7.R. Elghanian, J.J. Storhoff et al., Science 1997, 277, 1078
    8.V.I. Klimov, A.A. Mikhailovsky et al., Science 2000, 290, 314
    9.(a) Prokes, S.M.,Wang K.L. MRS Bull. 1999, 24(8), 13 (b) Cui, Y. , Wei. Q. , Park. H. , Lieber, C.M. , Science 2001, 293 , 1289
    10.Andrea Tao et al., Nano Letters 2000, Vol. 3 , No. 9 , 1229
    11.Y. Xia et al., Adv. Mater. 2003, 15, 353
    12.N.R. Jana et al., Langmuir 2002, 18, 922
    13.J.P. Kottmann et al., Phys. Rev. B 2001, 64, 235402
    14.Z.L. Wang et al., Surf. Sci. 1997, 380, 302
    15.R.J. Chimentao et al., Chem. Commun. 2004, 7, 846
    16.N.I. Kovtyukhova and et al., Chem. Eur. J. 2002, 8, 4354
    17.L.A. Dick et al., J. Phys. Chem. B 2002, 106, 853
    18.U. Kreibig and M. Vollmer, Optical Properties of Metal Cluster (Springer-Verlag, New York, 1995)
    19.K.L. Kelly et al., J. Phys. Chem. B 2003, 107, 668
    20.R. Jin et al., Science 2001, 294, 1901
    21.L. Hirsch et al., Proc. Natl. Acad. Sci. U.S.A 2003, 100, 13549
    22.Yugang Sun, Younan Xia et al. , Chem. Mater. 2002, 14, 4736-4745
    23.Yugang Sun and Younan Xia, Adv. Mater. 2002, 14, No. 11, June 5
    24.Yugang Sun, Younan Xia et al. , Nano Letters, 2003, Vol. 3, No. 7, 955-960
    25.Yugang Sun, Younan Xia, Science, 2002, Vol. 298, 2176
    26.Benjamin Wiley et al., Nano Letters, 2004, Vol. 4, No. 9, 1733-1739
    27.Rongchao Jin, YunWei Cao et al., Science, 2001, Vol. 294, 1901-1903
    28.Franklin Kim et al., J. Am. Chem. Soc. 2002, 124, 14316-14317
    29.Mathieu Maillard et al., Nano Letters, 2003, Vol. 3, No. 11, 1611
    30.A. Callegari et al., Nano Letters, 2003, Vol. 3, No. 11, 1565-1568
    31.Rongchao Jin, YunWei Cao et al., Nature 2003, 425, 487-490
    32.Catherine J. Murphy, Nikhil R. Jana, Adv. Mater. 2002, 14, No. 1, 80-82
    33.Nikhil R. Jana et al., J. Phys. Chem. B 2001, 105, 4065-4067
    34.Nikhil R. Jana et al., Adv. Mater. 2001, 13, No. 18, 1389-1393
    35.Sihai Chen, David L. Carroll, Nano Letters, 2002, Vol. 2, No. 9, 1003-1007
    36.Sihai Chen et al., J. Phys. Chem. B 2002, Vol. 106, No. 42, 10777-10781
    37.Gil-Jae Lee et al., Materials Chemistry and Physics 2004, 84, 197-204
    38.Anand Gole and Catherine J. Murphy, Chem. Mater. 2004, 16, 3633-3640
    39.Heinz-Helmut Perkampus, UV-VIS Spectroscopy and Its Applications, page 3, (Springer-Verlag Berlin Heidelberg 1992)
    40.張士欣、王崇仁,“金屬奈米粒子的吸收光譜”,1999, Vol.56 ,No.3 ,P.209~222.
    41.李言榮、渾正中、張勁燕,“材料物理學概論”,2003,P.162~P.164.
    42.Nikhil R. Jana et al., Chem. Commun. 2001, 617-618

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE