簡易檢索 / 詳目顯示

研究生: 洪季暄
Hung,Ji-Shiuan
論文名稱: 探討脂多醣生合成基因HP0859缺失與黏附蛋白BabA缺失對於胃幽門螺旋桿菌26695貼附能力與致病力之影響
Effects of the disrupting lipopolysaccharide inner core biosynthesis gene HP0859 and adhesin babA gene on Helicobacter pylori 26695 adhesion and pathogenicity
指導教授: 高茂傑
Kao,Mou-Chieh
口試委員: 藍忠昱
張晃猷
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 72
中文關鍵詞: 胃幽門螺旋桿菌黏附蛋白外膜蛋白脂多醣體
外文關鍵詞: Helicobacter pylori, BabA, Lipopolysaccharide, adhesins
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胃幽門螺旋桿菌感染了全世界約50%的人口,感染此菌後可能會導致胃炎﹑消化性潰
    瘍或是增加罹患胃腺癌的機率,而詳細的感染機制和長久感染的原因都尚未清楚,因
    此,找尋一個關鍵的致病因子來設計相關藥物對於治療胃幽門螺旋桿菌感染是很重要
    的。BabA 為第一個發現有黏附能力的外膜蛋白且已被證實能夠和宿主細胞上的Lewis b
    鍵結。脂多醣體為格蘭氏陰性菌外膜上特有的結構,主要是由脂質A﹑核心寡糖(包括
    外核與內核)與O 抗原所組成,其功能為維持外膜的穩定性與刺激宿主細胞的免疫反
    應。在先前的研究中,我們已確認HP0859 參與了脂多醣內核生合成,令人驚訝地,當
    我們剃除HP0859 後不只會縮短脂多醣體的結構同時也會使許多重要黏附蛋白的分子量
    變小,我們推測HP0859 的剃除可能會影響到這些黏附蛋白的醣化修飾,而黏附蛋白的
    醣化修飾對於胃幽門螺旋桿菌的貼附能力是非常重要的。在此研究中,我們建構了Δ0859,
    ΔBabA 與Δ0859/ΔBabA 突變菌株並且分析相關的貼附能力與致病力,有趣的是,黏附
    蛋白BabA 在HP0859 突變菌株中的分子量的確是比較小的,另外,HP0859 突變菌株與
    HP0859/BabA 雙重突變菌株的外膜通透性與疏水性都有顯著的上升,而在BabA 基因剃
    除的菌株中可以看見隨著靜置時間的增加其疏水性也有增加的現象,此外我們也發現在
    BabA 突變菌株中脂多醣體的O 抗原部分缺少了Lewis x,但BabA 突變菌株在貼附能力
    與毒素蛋白CagA 的注入都只有部分的減少,而HP0859 突變菌株與HP0859/BabA 雙重
    突變菌株都明顯的失去了貼附能力與毒素蛋白CagA 的注入。這些實驗結果均暗示著胃
    幽門螺旋桿菌需要緊密的貼附上宿主細胞,才能夠形成第四型分泌系統來注入毒素蛋白
    CagA,因此剔除掉單一重要黏附蛋白並無法有效的抑制胃幽門螺旋桿菌感染。相反的,
    剃除掉脂多醣內核生合成基因HP0859,能夠改變許多重要貼附蛋白(包含BabA)的醣化
    並使貼附能力有顯著性的降低,進而有效的抑制胃幽門螺旋桿菌的感染。


    Helicobacter pylori (H. pylori) infects more than 50% of the world population and
    results in gastritis, peptic ulceration and gastric adenocarcinoma. In spite of the identification
    of numerous virulence factors, the detailed mechanism of pathogenesis and long-term
    infection of this bacterium remain illusive. Therefore, finding a key gene of virulence and
    pathogenicity is important for generating a treatment against H. pylori infection. BabA is the
    first adhesin found in H. pylori and has been demonstrated to bind to Lewis b.
    Lipopolysaccharide (LPS) is essential for the physical integrity of the outer membrane in
    Gram-negative bacteria and plays an important role in immunostimulation of the infected
    hosts. It is composed of lipid A, core oligosaccharide (including inner core and outer core)
    and O-antigen. Previously, our laboratory had identified HP0859 is involved in the
    biosynthesis of H. pylori LPS inner core. Surprisingly, the knockout of HP0859 not only
    shortens the LPS structure but also decreases the molecule weight of several key adhesins. We
    proposed that the disruption of HP0859 alters the glycosylation status of adhesins, and the
    glycosylation of key adhesins plays a vital role in H. pylori adhesion. In this study, we
    constructed the corresponding mutants and tested the adhesion and pathogenesis ability of WT,
    Δ0859, ΔBabA and Δ0859/ΔBabA. Interestingly, the molecular size of BabA was indeed
    reduced in Δ0859. The permeability and hydrophobicity of outer membrane were significantly
    increased in Δ0859 and Δ0859/ΔBabA, and the hydrophobicity in ΔBabA was slightly
    increased along with the increasing time of standing. We also found that ΔBabA lacked Lewis
    x in the O-antigen of LPS. In comparison, ΔBabA lost only a part of adhesion ability and
    CagA translocation, but Δ0859 and Δ0859/ΔBabA markedly abolished these abilities. This
    observation implied that H. pylori requires tight adhesion to host cells to promote the
    formation of type IV secretion system (T4SS) to inject the Cag A, and the disruption of bab A
    expression will not completely inhibit H. pylori adhesion. In contrast, the disruption of HP0859 gene involved in the LPS inner core biosynthesis can alter the glycosylation status in
    all of the key adhesins (including BabA) and thus significantly reduce H. pylori adhesion.

    摘要 ....................................................................................................................................... I Abstract................................................................................................................................ II List of Tables ...................................................................................................................... VI List of Figures ................................................................................................................... VII List of Appendixes…………………………………………………………………………..IX Abbreviations ..................................................................................................................... IX Chapter 1. Introduction........................................................................................................1 1.1 The history of Helicobacter pylori ................................................................................1 1.2 The characteristics and genetic variability of Helicobacter pylori ..................................1 1.3 The overview of Helicobacter pylori infection ..............................................................3 1.4 Two major virulence factors (CagA and VacA) of Helicobacter pylori ..........................3 1.5 The lipopolysaccharide of Helicobacter pylori ..............................................................5 1.6 The outer membrane proteins of Helicobacter pylori .....................................................7 1.7 The motivation of this study and the experimental design..............................................8 Chapter 2. Materials and methods ..................................................................................... 10 2.1 Materials ..................................................................................................................... 10 2.2 The culture condition of H. pylori, E. coli and AGS cells ............................................ 10 2.3 Construction of BabA knock mutant, HP0859/BabA double knockout mutant and the corresponding BabA-His mutant strain ............................................................................. 11 2.4 Isolation of outer membrane........................................................................................ 14 2.5 Growth curve analysis of various H. pylori strains ...................................................... 15 2.6 Antibiotic novobiocin and detergent SDS sensitivity assays ........................................ 15 2.7 Autoaggregation and hydrophobicity assays ................................................................ 15 2.8 LPS extraction and detection by silver staining and immunoblotting ........................... 16 2.9 Adhesion assay ........................................................................................................... 17 2.10 Analysis of morphological changes of AGS cells after infection by various H. pylori mutants ............................................................................................................................. 18 2.11 CagA transloction assay ............................................................................................ 18 2.12 SDS-PAGE and immunoblotting analysis .................................................................. 19 2.13 Far western blotting analysis ..................................................................................... 19 2.14 Prediction of signal peptide, transmembrane domain and glycosylation sites of BabA ......................................................................................................................................... 20 2.15 Statistical analysis ..................................................................................................... 20 Chapter 3. Results .............................................................................................................. 21 3.1 Construction, protein profile and key adhesins in various H. pylori mutant strains ...... 21 3.2 The effects of various mutations on H. pylori growth .................................................. 22 3.3 The effects of various mutations on the permeability and hydrophobicity of H. pylori outer membrane ................................................................................................................ 22 3.4 The effects of various mutations on LPS expression of H. pylori ................................. 24 3.5 The effects of various mutations on AGS cell morphological changes after H. pylori infection and on adhesion ................................................................................................. 25 3.6 The adhesion ability and the amounts of CagA injected into AGS cells by various H. pylori mutants ................................................................................................................... 26 3.7 The Lewis b binding ability of BabA from H. pylori 26695 wild-type and the HP0859 knockout mutant. .............................................................................................................. 27 3.8 The prediction of signal peptides, transmembrane domains and glycosylation sites of BabA from H. pylori 26695 .............................................................................................. 28 3.9 The expression of BabA-His in H. pylori .................................................................... 28 Chapter 4. Discussion ......................................................................................................... 30 Chapter 5. Reference .......................................................................................................... 35 Tables .................................................................................................................................. 44 Figures………………………………………………………………………………......……47 Appendixes .......................................................................................................................... 68

    1. Goodwin, C. S., Armstorong,J.A.,Chilver,T., Peters,M., Collins, M. D., Sly, L.,
    Macconnell,W., and Harper, W. E. S. (1989) Transfer of Campylobacter-Pylori and
    Campylobacter-Mustelae to Helicobacter Gen-Nov as Helicobacter-Pylori Comb-Nov
    and Helicobacter Mustelae Comd-Nov, respectively. Int J Syst Bacterial, 397-405
    2. Marshall, B. J., and Warren, J. R. (1984) Unidentified curved bacilli in the stomach of
    patients with gastritis and peptic ulceration. Lancet 1, 1311-1315
    3. O'Toole, P. W., Lane, M. C., and Porwollik, S. (2000) Helicobacter pylori motility.
    Microbes and infection / Institut Pasteur 2, 1207-1214
    4. Mobley, H. L. (1996) The role of Helicobacter pylori urease in the pathogenesis of
    gastritis and peptic ulceration. Alimentary pharmacology & therapeutics 10 Suppl 1,
    57-64
    5. Hawtin, P. R., Stacey, A. R., and Newell, D. G. (1990) Investigation of the structure
    and localization of the urease of Helicobacter pylori using monoclonal antibodies.
    Journal of general microbiology 136, 1995-2000
    6. Suerbaum, S. (1995) The complex flagella of gastric Helicobacter species. Trends in
    microbiology 3, 168-170; discussion 170-161
    7. Mori, M., Suzuki, H., Suzuki, M., Kai, A., Miura, S., and Ishii, H. (1997) Catalase and
    superoxide dismutase secreted from Helicobacter pylori. Helicobacter 2, 100-105
    8. Salama, N. R., Hartung, M. L., and Muller, A. (2013) Life in the human stomach:
    persistence strategies of the bacterial pathogen Helicobacter pylori. Nature reviews.
    Microbiology 11, 385-399
    9. Correa, P., and Piazuelo, M. B. (2011) Helicobacter pylori Infection and Gastric
    Adenocarcinoma. US gastroenterology & hepatology review 7, 59-64
    10. Chey, W. D., Wong, B. C., and Practice Parameters Committee of the American
    College of, G. (2007) American College of Gastroenterology guideline on the
    management of Helicobacter pylori infection. The American journal of
    gastroenterology 102, 1808-1825
    11. Shah, S., Qaqish, R., Patel, V., and Amiji, M. (1999) Evaluation of the factors
    influencing stomach-specific delivery of antibacterial agents for Helicobacter pylori
    infection. The Journal of pharmacy and pharmacology 51, 667-672
    12. Graham, D. Y., and Shiotani, A. (2008) New concepts of resistance in the treatment of
    Helicobacter pylori infections. Nature clinical practice. Gastroenterology &
    hepatology 5, 321-331
    13. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R.
    D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush,
    36
    J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R.,
    Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D.,
    Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J.
    M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E.,
    Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M., and Venter, J.
    C. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori.
    Nature 388, 539-547
    14. Oh, J. D., Kling-Backhed, H., Giannakis, M., Xu, J., Fulton, R. S., Fulton, L. A.,
    Cordum, H. S., Wang, C., Elliott, G., Edwards, J., Mardis, E. R., Engstrand, L. G., and
    Gordon, J. I. (2006) The complete genome sequence of a chronic atrophic gastritis
    Helicobacter pylori strain: evolution during disease progression. Proceedings of the
    National Academy of Sciences of the United States of America 103, 9999-10004
    15. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D.
    R., Noonan, B., Guild, B. C., deJonge, B. L., Carmel, G., Tummino, P. J., Caruso, A.,
    Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang,
    Q., Taylor, D. E., Vovis, G. F., and Trust, T. J. (1999) Genomic-sequence comparison
    of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature
    397, 176-180
    16. Ha, N. C., Oh, S. T., Sung, J. Y., Cha, K. A., Lee, M. H., and Oh, B. H. (2001)
    Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nature
    structural biology 8, 505-509
    17. Hu, L. T., Foxall, P. A., Russell, R., and Mobley, H. L. (1992) Purification of
    recombinant Helicobacter pylori urease apoenzyme encoded by ureA and ureB.
    Infection and immunity 60, 2657-2666
    18. Bauerfeind, P., Garner, R. M., and Mobley, L. T. (1996) Allelic exchange mutagenesis
    of nixA in Helicobacter pylori results in reduced nickel transport and urease activity.
    Infection and immunity 64, 2877-2880
    19. Bury-Mone, S., Skouloubris, S., Labigne, A., and De Reuse, H. (2001) The
    Helicobacter pylori UreI protein: role in adaptation to acidity and identification of
    residues essential for its activity and for acid activation. Molecular microbiology 42,
    1021-1034
    20. Pflock, M., Kennard, S., Delany, I., Scarlato, V., and Beier, D. (2005) Acid-induced
    activation of the urease promoters is mediated directly by the ArsRS two-component
    system of Helicobacter pylori. Infection and immunity 73, 6437-6445
    21. Kao, C. Y., Sheu, B. S., and Wu, J. J. (2016) Helicobacter pylori infection: An
    overview of bacterial virulence factors and pathogenesis. Biomedical journal 39,
    14-23
    22. Hatakeyama, M. (2014) Helicobacter pylori CagA and gastric cancer: a paradigm for
    hit-and-run carcinogenesis. Cell host & microbe 15, 306-316
    37
    23. Palframan, S. L., Kwok, T., and Gabriel, K. (2012) Vacuolating cytotoxin A (VacA), a
    key toxin for Helicobacter pylori pathogenesis. Frontiers in cellular and infection
    microbiology 2, 92
    24. Parker, H., and Keenan, J. I. (2012) Composition and function of Helicobacter pylori
    outer membrane vesicles. Microbes and infection / Institut Pasteur 14, 9-16
    25. Kuehn, M. J., and Kesty, N. C. (2005) Bacterial outer membrane vesicles and the
    host-pathogen interaction. Genes & development 19, 2645-2655
    26. Audibert, C., Burucoa, C., Janvier, B., and Fauchere, J. L. (2001) implication of the
    structure of the Helicobacter pylori cag pathogenicity island in induction of
    interleukin-8 secretion. Infection and immunity 69, 1625-1629
    27. Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone,
    A., Papini, E., Xiang, Z., Figura, N., and et al. (1993) Molecular characterization of
    the 128-kDa immunodominant antigen of Helicobacter pylori associated with
    cytotoxicity and duodenal ulcer. Proceedings of the National Academy of Sciences of
    the United States of America 90, 5791-5795
    28. Jones, K. R., Whitmire, J. M., and Merrell, D. S. (2010) A Tale of Two Toxins:
    Helicobacter pylori CagA and VacA Modulate Host Pathways that Impact Disease.
    Frontiers in microbiology 1, 115
    29. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000)
    Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV
    secretion. Science 287, 1497-1500
    30. Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999) Altered states:
    involvement of phosphorylated CagA in the induction of host cellular growth changes
    by Helicobacter pylori. Proceedings of the National Academy of Sciences of the
    United States of America 96, 14559-14564
    31. Kwok, T., Zabler, D., Urman, S., Rohde, M., Hartig, R., Wessler, S., Misselwitz, R.,
    Berger, J., Sewald, N., Konig, W., and Backert, S. (2007) Helicobacter exploits
    integrin for type IV secretion and kinase activation. Nature 449, 862-866
    32. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., and
    Hatakeyama, M. (2002) SHP-2 tyrosine phosphatase as an intracellular target of
    Helicobacter pylori CagA protein. Science 295, 683-686
    33. Poppe, M., Feller, S. M., Romer, G., and Wessler, S. (2007) Phosphorylation of
    Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 26, 3462-3472
    34. Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F., and Backert, S. (2002) Src is the
    kinase of the Helicobacter pylori CagA protein in vitro and in vivo. The Journal of
    biological chemistry 277, 6775-6778
    35. Tsutsumi, R., Takahashi, A., Azuma, T., Higashi, H., and Hatakeyama, M. (2006)
    Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed
    with Helicobacter pylori CagA. Molecular and cellular biology 26, 261-276
    38
    36. Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M., and Hatakeyama, M. (2003)
    Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between
    CagA and C-terminal Src kinase. The Journal of biological chemistry 278, 3664-3670
    37. Amieva, M. R., Vogelmann, R., Covacci, A., Tompkins, L. S., Nelson, W. J., and
    Falkow, S. (2003) Disruption of the epithelial apical-junctional complex by
    Helicobacter pylori CagA. Science 300, 1430-1434
    38. Bagnoli, F., Buti, L., Tompkins, L., Covacci, A., and Amieva, M. R. (2005)
    Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes
    in MDCK cells. Proceedings of the National Academy of Sciences of the United States
    of America 102, 16339-16344
    39. Saadat, I., Higashi, H., Obuse, C., Umeda, M., Murata-Kamiya, N., Saito, Y., Lu, H.,
    Ohnishi, N., Azuma, T., Suzuki, A., Ohno, S., and Hatakeyama, M. (2007)
    Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell
    polarity. Nature 447, 330-333
    40. Magalhaes, A., Marcos-Pinto, R., Nairn, A. V., Dela Rosa, M., Ferreira, R. M.,
    Junqueira-Neto, S., Freitas, D., Gomes, J., Oliveira, P., Santos, M. R., Marcos, N. T.,
    Xiaogang, W., Figueiredo, C., Oliveira, C., Dinis-Ribeiro, M., Carneiro, F., Moremen,
    K. W., David, L., and Reis, C. A. (2015) Helicobacter pylori chronic infection and
    mucosal inflammation switches the human gastric glycosylation pathways. Biochimica
    et biophysica acta 1852, 1928-1939
    41. Sharma, S. A., Tummuru, M. K., Blaser, M. J., and Kerr, L. D. (1998) Activation of
    IL-8 gene expression by Helicobacter pylori is regulated by transcription factor
    nuclear factor-kappa B in gastric epithelial cells. Journal of immunology 160,
    2401-2407
    42. Backert, S., and Tegtmeyer, N. (2010) the versatility of the Helicobacter pylori
    vacuolating cytotoxin vacA in signal transduction and molecular crosstalk. Toxins 2,
    69-92
    43. Vinion-Dubiel, A. D., McClain, M. S., Czajkowsky, D. M., Iwamoto, H., Ye, D., Cao,
    P., Schraw, W., Szabo, G., Blanke, S. R., Shao, Z., and Cover, T. L. (1999) A dominant
    negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits
    VacA-induced cell vacuolation. The Journal of biological chemistry 274, 37736-37742
    44. Ye, D., and Blanke, S. R. (2000) Mutational analysis of the Helicobacter pylori
    vacuolating toxin amino terminus: identification of amino acids essential for cellular
    vacuolation. Infection and immunity 68, 4354-4357
    45. McClain, M. S., Cao, P., and Cover, T. L. (2001) Amino-terminal hydrophobic region
    of Helicobacter pylori vacuolating cytotoxin (VacA) mediates transmembrane protein
    dimerization. Infection and immunity 69, 1181-1184
    46. Kim, S., Chamberlain, A. K., and Bowie, J. U. (2004) Membrane channel structure of
    Helicobacter pylori vacuolating toxin: role of multiple GXXXG motifs in cylindrical
    39
    channels. Proceedings of the National Academy of Sciences of the United States of
    America 101, 5988-5991
    47. Garner, J. A., and Cover, T. L. (1996) Binding and internalization of the Helicobacter
    pylori vacuolating cytotoxin by epithelial cells. Infection and immunity 64, 4197-4203
    48. de Bernard, M., Arico, B., Papini, E., Rizzuto, R., Grandi, G., Rappuoli, R., and
    Montecucco, C. (1997) Helicobacter pylori toxin VacA induces vacuole formation by
    acting in the cell cytosol. Molecular microbiology 26, 665-674
    49. Cover, T. L., and Blanke, S. R. (2005) Helicobacter pylori VacA, a paradigm for toxin
    multifunctionality. Nature reviews. Microbiology 3, 320-332
    50. Semeraro, N., Montemurro, P., Piccoli, C., Muolo, V., Colucci, M., Giuliani, G.,
    Fumarola, D., Pece, S., and Moran, A. P. (1996) Effect of Helicobacter pylori
    lipopolysaccharide (LPS) and LPS derivatives on the production of tissue factor and
    plasminogen activator inhibitor type 2 by human blood mononuclear cells. The
    Journal of infectious diseases 174, 1255-1260
    51. Ahmadzadeh, E., Zarkesh-Esfahani, H., Roghanian, R., and Akbar, F. N. (2010)
    Comparison of Helicobacter pylori and Escherichia coli in induction of TNF-alpha
    mRNA from human peripheral blood mononuclear cells. Indian journal of medical
    microbiology 28, 233-237
    52. Moran, A. P., Knirel, Y. A., Senchenkova, S. N., Widmalm, G., Hynes, S. O., and
    Jansson, P. E. (2002) Phenotypic variation in molecular mimicry between
    Helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface
    glycoforms. Acid-induced phase variation in Lewis(x) and Lewis(y) expression by H.
    pylori lipopolysaccharides. The Journal of biological chemistry 277, 5785-5795
    53. Moran, A. P. (2007) Lipopolysaccharide in bacterial chronic infection: insights from
    Helicobacter pylori lipopolysaccharide and lipid A. International journal of medical
    microbiology : IJMM 297, 307-319
    54. Erridge, C., Bennett-Guerrero, E., and Poxton, I. R. (2002) Structure and function of
    lipopolysaccharides. Microbes and infection / Institut Pasteur 4, 837-851
    55. Helander, I. M., Lindner, B., Brade, H., Altmann, K., Lindberg, A. A., Rietschel, E. T.,
    and Zahringer, U. (1988) Chemical structure of the lipopolysaccharide of
    Haemophilus influenzae strain I-69 Rd-/b+. Description of a novel deep-rough
    chemotype. European journal of biochemistry / FEBS 177, 483-492
    56. Aspinall, G. O., Monteiro, M. A., Pang, H., Walsh, E. J., and Moran, A. P. (1996)
    Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC
    43504): structure of the O antigen chain and core oligosaccharide regions.
    Biochemistry 35, 2489-2497
    57. Heneghan, M. A., McCarthy, C. F., and Moran, A. P. (2000) Relationship of blood
    group determinants on Helicobacter pylori lipopolysaccharide with host lewis
    phenotype and inflammatory response. Infection and immunity 68, 937-941
    40
    58. Monteiro, M. A., Zheng, P., Ho, B., Yokota, S., Amano, K., Pan, Z., Berg, D. E., Chan,
    K. H., MacLean, L. L., and Perry, M. B. (2000) Expression of histo-blood group
    antigens by lipopolysaccharides of Helicobacter pylori strains from asian hosts: the
    propensity to express type 1 blood-group antigens. Glycobiology 10, 701-713
    59. Edwards, N. J., Monteiro, M. A., Faller, G., Walsh, E. J., Moran, A. P., Roberts, I. S.,
    and High, N. J. (2000) Lewis X structures in the O antigen side-chain promote
    adhesion of Helicobacter pylori to the gastric epithelium. Molecular microbiology 35,
    1530-1539
    60. Doig, P., Exner, M. M., Hancock, R. E., and Trust, T. J. (1995) Isolation and
    characterization of a conserved porin protein from Helicobacter pylori. Journal of
    bacteriology 177, 5447-5452
    61. Exner, M. M., Doig, P., Trust, T. J., and Hancock, R. E. (1995) Isolation and
    characterization of a family of porin proteins from Helicobacter pylori. Infection and
    immunity 63, 1567-1572
    62. Alm, R. A., Bina, J., Andrews, B. M., Doig, P., Hancock, R. E., and Trust, T. J. (2000)
    Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein
    families. Infection and immunity 68, 4155-4168
    63. Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F. O., Forsberg, L., Roche, N., Angstrom,
    J., Larsson, T., Teneberg, S., Karlsson, K. A., Altraja, S., Wadstrom, T., Kersulyte, D.,
    Berg, D. E., Dubois, A., Petersson, C., Magnusson, K. E., Norberg, T., Lindh, F.,
    Lundskog, B. B., Arnqvist, A., Hammarstrom, L., and Boren, T. (2002) Helicobacter
    pylori SabA adhesin in persistent infection and chronic inflammation. Science 297,
    573-578
    64. Senkovich, O. A., Yin, J., Ekshyyan, V., Conant, C., Traylor, J., Adegboyega, P.,
    McGee, D. J., Rhoads, R. E., Slepenkov, S., and Testerman, T. L. (2011) Helicobacter
    pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils.
    Infection and immunity 79, 3106-3116
    65. Ilver, D., Arnqvist, A., Ogren, J., Frick, I. M., Kersulyte, D., Incecik, E. T., Berg, D. E.,
    Covacci, A., Engstrand, L., and Boren, T. (1998) Helicobacter pylori adhesin binding
    fucosylated histo-blood group antigens revealed by retagging. Science 279, 373-377
    66. Rossez, Y., Gosset, P., Boneca, I. G., Magalhaes, A., Ecobichon, C., Reis, C. A.,
    Cieniewski-Bernard, C., Joncquel Chevalier Curt, M., Leonard, R., Maes, E.,
    Sperandio, B., Slomianny, C., Sansonetti, P. J., Michalski, J. C., and Robbe-Masselot,
    C. (2014) The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter
    pylori to human gastric mucosa. The Journal of infectious diseases 210, 1286-1295
    67. Benktander, J., Angstrom, J., Breimer, M. E., and Teneberg, S. (2012) Redefinition of
    the carbohydrate binding specificity of Helicobacter pylori BabA adhesin. The
    Journal of biological chemistry 287, 31712-31724
    68. Gerhard, M., Lehn, N., Neumayer, N., Boren, T., Rad, R., Schepp, W., Miehlke, S.,
    41
    Classen, M., and Prinz, C. (1999) Clinical relevance of the Helicobacter pylori gene
    for blood-group antigen-binding adhesin. Proceedings of the National Academy of
    Sciences of the United States of America 96, 12778-12783
    69. Ishijima, N., Suzuki, M., Ashida, H., Ichikawa, Y., Kanegae, Y., Saito, I., Boren, T.,
    Haas, R., Sasakawa, C., and Mimuro, H. (2011) BabA-mediated adherence is a
    potentiator of the Helicobacter pylori type IV secretion system activity. The Journal of
    biological chemistry 286, 25256-25264
    70. Seo, H. S., Mu, R., Kim, B. J., Doran, K. S., and Sullam, P. M. (2012) Binding of
    glycoprotein Srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to
    brain endothelium and the development of meningitis. PLoS pathogens 8, e1002947
    71. Lu, Q., Yao, Q., Xu, Y., Li, L., Li, S., Liu, Y., Gao, W., Niu, M., Sharon, M.,
    Ben-Nissan, G., Zamyatina, A., Liu, X., Chen, S., and Shao, F. (2014) An
    iron-containing dodecameric heptosyltransferase family modifies bacterial
    autotransporters in pathogenesis. Cell host & microbe 16, 351-363
    72. Hopf, P. S., Ford, R. S., Zebian, N., Merkx-Jacques, A., Vijayakumar, S., Ratnayake,
    D., Hayworth, J., and Creuzenet, C. (2011) Protein glycosylation in Helicobacter
    pylori: beyond the flagellins? PloS one 6, e25722
    73. Chang, P. C., Wang, C. J., You, C. K., and Kao, M. C. (2011) Effects of a HP0859
    (rfaD) knockout mutation on lipopolysaccharide structure of Helicobacter pylori
    26695 and the bacterial adhesion on AGS cells. Biochemical and biophysical research
    communications 405, 497-502
    74. Horton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z., and Pease, L. R. (1993)
    Gene splicing by overlap extension. Methods in enzymology 217, 270-279
    75. Lefebvre, B., Formstecher, P., and Lefebvre, P. (1995) Improvement of the gene
    splicing overlap (SOE) method. BioTechniques 19, 186-188
    76. Horton, R. M. (1997) In vitro recombination and mutagenesis of DNA. SOEing
    together tailor-made genes. Methods in molecular biology 67, 141-149
    77. Haas, R., Meyer, T. F., and van Putten, J. P. (1993) Aflagellated mutants of
    Helicobacter pylori generated by genetic transformation of naturally competent strains
    using transposon shuttle mutagenesis. Molecular microbiology 8, 753-760
    78. Bereswill, S., Krainick, C., Stahler, F., Herrmann, L., and Kist, M. (2003) Analysis of
    the rdxA gene in high-level metronidazole-resistant clinical isolates confirms a limited
    use of rdxA mutations as a marker for prediction of metronidazole resistance in
    Helicobacter pylori. FEMS immunology and medical microbiology 36, 193-198
    79. Edge, A. S. (2003) Deglycosylation of glycoproteins with trifluoromethanesulphonic
    acid: elucidation of molecular structure and function. The Biochemical journal 376,
    339-350
    80. Magnusson, K. E., Stendahl, O., Tagesson, C., Edebo, L., and Johansson, G. (1977)
    The tendency of smooth and rough Salmonella typhimurium bacteria and
    42
    lipopolysaccharide to hydrophobic and ionic interaction, as studied in aqueous
    polymer two-phase systems. Acta pathologica et microbiologica Scandinavica.
    Section B, Microbiology 85, 212-218
    81. Cunningham, R. K., Soderstrom, T. O., Gillman, C. F., and van Oss, C. J. (1975)
    Phagocytosis as a surface phenomenon. V. Contact angles and phagocytosis of rough
    and smooth strains of Salmonella typhimurium, and the influence of specific antiserum.
    Immunological communications 4, 429-442
    82. Monteiro, M. A., Appelmelk, B. J., Rasko, D. A., Moran, A. P., Hynes, S. O., MacLean,
    L. L., Chan, K. H., Michael, F. S., Logan, S. M., O'Rourke, J., Lee, A., Taylor, D. E.,
    and Perry, M. B. (2000) Lipopolysaccharide structures of Helicobacter pylori genomic
    strains 26695 and J99, mouse model H. pylori Sydney strain, H. pylori P466 carrying
    sialyl Lewis X, and H. pylori UA915 expressing Lewis B classification of H. pylori
    lipopolysaccharides into glycotype families. European journal of biochemistry / FEBS
    267, 305-320
    83. Mecsas, J., Rouviere, P. E., Erickson, J. W., Donohue, T. J., and Gross, C. A. (1993)
    The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated
    by expression of outer membrane proteins. Genes & development 7, 2618-2628
    84. Fei, Y. Y., Schmidt, A., Bylund, G., Johansson, D. X., Henriksson, S., Lebrilla, C.,
    Solnick, J. V., Boren, T., and Zhu, X. D. (2011) Use of real-time, label-free analysis in
    revealing low-affinity binding to blood group antigens by Helicobacter pylori.
    Analytical chemistry 83, 6336-6341
    85. Hage, N., Howard, T., Phillips, C., Brassington, C., Overman, R., Debreczeni, J.,
    Gellert, P., Stolnik, S., Winkler, G. S., and Falcone, F. H. (2015) Structural basis of
    Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA. Science advances
    1, e1500315
    86. Wang, Z., Wang, J., Ren, G., Li, Y., and Wang, X. (2015) Influence of Core
    Oligosaccharide of Lipopolysaccharide to Outer Membrane Behavior of Escherichia
    coli. Marine drugs 13, 3325-3339
    87. Nakao, R., Ramstedt, M., Wai, S. N., and Uhlin, B. E. (2012) Enhanced biofilm
    formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PloS one 7,
    e51241
    88. Champasa, K., Longwell, S. A., Eldridge, A. M., Stemmler, E. A., and Dube, D. H.
    (2013) Targeted identification of glycosylated proteins in the gastric pathogen
    Helicobacter pylori (Hp). Molecular & cellular proteomics : MCP 12, 2568-2586
    89. Day, C. J., Tran, E. N., Semchenko, E. A., Tram, G., Hartley-Tassell, L. E., Ng, P. S.,
    King, R. M., Ulanovsky, R., McAtamney, S., Apicella, M. A., Tiralongo, J., Morona,
    R., Korolik, V., and Jennings, M. P. (2015) Glycan:glycan interactions: High affinity
    biomolecular interactions that can mediate binding of pathogenic bacteria to host cells.
    Proceedings of the National Academy of Sciences of the United States of America 112,
    43
    E7266-7275
    90. Esko, J. D., and Sharon, N. (2009) Microbial Lectins: Hemagglutinins, Adhesins, and
    Toxins. in Essentials of Glycobiology (Varki, A., Cummings, R. D., Esko, J. D., Freeze,
    H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., and Etzler, M. E. eds.), 2nd Ed., Cold
    Spring Harbor (NY). pp
    91. Pang, S. S., Nguyen, S. T., Perry, A. J., Day, C. J., Panjikar, S., Tiralongo, J.,
    Whisstock, J. C., and Kwok, T. (2014) The three-dimensional structure of the
    extracellular adhesion domain of the sialic acid-binding adhesin SabA from
    Helicobacter pylori. The Journal of biological chemistry 289, 6332-6340
    92. Beier, D., Spohn, G., Rappuoli, R., and Scarlato, V. (1998) Functional analysis of the
    Helicobacter pylori principal sigma subunit of RNA polymerase reveals that the
    spacer region is important for efficient transcription. Molecular microbiology 30,
    121-134
    93. Sun, Y., Liu, S., Li, W., Shan, Y., Li, X., Lu, X., Li, Y., Guo, Q., Zhou, Y., and Jia, J.
    (2013) Proteomic analysis of the function of sigma factor sigma54 in Helicobacter
    pylori survival with nutrition deficiency stress in vitro. PloS one 8, e72920
    94. Price, S. B., Cheng, C. M., Kaspar, C. W., Wright, J. C., DeGraves, F. J., Penfound, T.
    A., Castanie-Cornet, M. P., and Foster, J. W. (2000) Role of rpoS in acid resistance and
    fecal shedding of Escherichia coli O157:H7. Applied and environmental microbiology
    66, 632-637
    95. Hengge-Aronis, R., Lange, R., Henneberg, N., and Fischer, D. (1993) Osmotic
    regulation of rpoS-dependent genes in Escherichia coli. Journal of bacteriology 175,
    259-265
    96. Arnold, C. N., McElhanon, J., Lee, A., Leonhart, R., and Siegele, D. A. (2001) Global
    analysis of Escherichia coli gene expression during the acetate-induced acid tolerance
    response. Journal of bacteriology 183, 2178-2186
    97. Valkonen, K. H., Wadstrom, T., and Moran, A. P. (1994) Interaction of
    lipopolysaccharides of Helicobacter pylori with basement membrane protein laminin.
    Infection and immunity 62, 3640-3648
    98. Mahdavi, J., Boren, T., Vandenbroucke-Grauls, C., and Appelmelk, B. J. (2003)
    Limited role of lipopolysaccharide Lewis antigens in adherence of Helicobacter pylori
    to the human gastric epithelium. Infection and immunity 71, 2876-2880

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE