研究生: |
葉柏賢 Yeh, Po-Hsien |
---|---|
論文名稱: |
兼顧高增益與低功耗之超薄氧化鋅異質接面電晶體的製作與研究 The Fabrication and Characterization of Ultra Thin Zinc-Oxide Heterojunction Transistor with High Gain and Low Power Operation |
指導教授: |
徐永珍
Hsu, Klaus Yung-Jane |
口試委員: |
江雨龍
Jiang, Yeu-Long 賴宇紳 Lai, Yu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 超薄氧化鋅 、異質接面電晶體 、高增益 、低功耗 、原子層沉積薄膜 、貼合電極 |
外文關鍵詞: | Ultra Thin Zinc-Oxide, Hetrojunction Transistor, High Gain, Low Power, Atomic Layer Deposition Thin film, adhesion electrode |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是探討超薄氧化鋅的研究,將氧化鋅從一般的薄膜厚度(數十到數百奈米)壓縮成一個原子層厚度,此材料在電性上會與一般薄膜厚度的氧化鋅產生極大的差異。我們期望超薄氧化鋅與其他材料形成蕭特基接面,進而組成電晶體,並且讓電晶體具有非常高的電流增益與開關特性。
本論文透過X光吸收光譜與X光螢光光譜的分析,顯示了超薄氧化鋅確實有成長在矽基板上。而在元件的製程中發現,超薄氧化鋅上熱蒸鍍金屬會導致金屬擴散,於是改用黏貼的方式製作論文中電晶體的集極與基極電極。
我們量測到元件的共射極電流增益β在BC接面逆偏0.2V且VBE為1mV的情況下,可達到57的數值,並且共基極電流增益α非常接近於1,驗證了以超薄氧化鋅當作電晶體基極的設計概念。若定義FOM為 β/V_BE V_CB,本論文能得到285000的數值,與其他篇論文比較高出不少,因此本論文製作之電晶體在低功耗與高增益上皆有非常好的表現。
This paper is mainly about the research of ultra-thin Zinc-Oxide. The thickness of bulk Zinc-Oxide is reduced from tens to hundreds of nanometers to only an atomic layer. There is great difference in electrical properties between ultra-thin Zinc-Oxide and bulk Zinc-Oxide. It was expected that the ultra-thin Zinc-Oxide may form Schottky contacts with other materials, which can be used to form a transistor, with extremely high current gain and proper switching characteristics.
The analysis of X-ray absorption spectrum and X-ray fluorescence spectrum, shows that the ultra-thin Zinc-Oxide was indeed deposited on the silicon substrate. Since thermal vapor deposition of metal on the ultra-thin Zinc-Oxide resulted in metal diffusion, through the ultra-thin Zinc-Oxide during the fabrication process, adhesion was used to fabricate the collector region and the base electrode.
When VCB was biased at 0.2V and VBE was biased at 1mV, a common emitter current gain β was measured to be 57 and a common base current gain α was measured to be very close to 1. It proves the concept of using ultra-thin Zinc-Oxide as the base of transistor. The FOM, which is defined as β/V_BE V_CB, was measured to be 285000 in this paper and it is higher than those in other researches. As a result, the transistor in this paper has great performance in both low power consumption and high current gain.
[1] N. D. Mermin, "Crystalline Order in Two Dimensions," Physical Review, vol. 176, no. 1, pp. 250-254, 1968, doi: 10.1103/PhysRev.176.250.
[2] A. K. Geim and K. S. Novoselov, "The rise of graphene," in Nanoscience and Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010, pp. 11-19.
[3] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[4] A. Splendiani et al., "Emerging photoluminescence in monolayer MoS2," Nano letters, vol. 10, no. 4, pp. 1271-1275, 2010.
[5] A. M. Jones et al., "Optical generation of excitonic valley coherence in monolayer WSe 2," Nature nanotechnology, vol. 8, no. 9, p. 634, 2013.
[6] Y. Zhang et al., "Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary," ACS nano, vol. 7, no. 10, pp. 8963-8971, 2013.
[7] T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, "Quantum emission from hexagonal boron nitride monolayers," Nature nanotechnology, vol. 11, no. 1, p. 37, 2016.
[8] M. Niskanen et al., "Porphyrin adsorbed on the (101[combining macron]0) surface of the wurtzite structure of ZnO--conformation induced effects on the electron transfer characteristics," Phys Chem Chem Phys, vol. 15, no. 40, pp. 17408-18, Oct 28 2013, doi: 10.1039/c3cp51685g.
[9] C. Lee, K. Yim, Y. Cho, and J. G. Lee, "A comparison of transmittance properties between ZnO: Al films for transparent conductors for solar cells deposited by sputtering of AZO and cosputtering of AZO/ZnO," Rare Metals, vol. 25, no. 6, Supplement 1, pp. 105-109, 2006/10/01/ 2006.
[10] S. J. Jiao et al., "ZnO p-n junction light-emitting diodes fabricated on sapphire substrates," Applied Physics Letters, vol. 88, no. 3, 2006, doi: 10.1063/1.2166686.
[11] M. Zeman, R. A. C. M. M. V. Swaau, M. Zuiddam, J. W. Metselaar, and R. E. I. Schropp, "Effect of Interface Roughness on Light Scattering and Optical Properties of a-Si:H Solar Cells," MRS Proceedings, vol. 557, 2011, doi: 10.1557/proc-557-725.
[12] Y. M. Chang, M. C. Liu, P. H. Kao, C. M. Lin, H. Y. Lee, and J. Y. Juang, "Field emission in vertically aligned ZnO/Si-nanopillars with ultra low turn-on field," ACS Appl Mater Interfaces, vol. 4, no. 3, pp. 1411-6, Mar 2012, doi: 10.1021/am201667m.
[13] S. Park, S. An, H. Ko, C. Jin, and C. Lee, "Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties," ACS Appl Mater Interfaces, vol. 4, no. 7, pp. 3650-6, Jul 25 2012, doi: 10.1021/am300741r.
[14] C. Park, J. Lee, H.-M. So, and W. S. Chang, "An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth," Journal of Materials Chemistry C, vol. 3, no. 12, pp. 2737-2743, 2015, doi: 10.1039/c4tc02821j.
[15] H. W. Pollack, "Materials science and metallurgy," 1988.
[16] F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfold, and J. H. Harding, "Growth of ZnO thin films—experiment and theory," J. Mater. Chem., vol. 15, no. 1, pp. 139-148, 2005, doi: 10.1039/b414111c.
[17] C. Tusche, H. L. Meyerheim, and J. Kirschner, "Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets," Phys Rev Lett, vol. 99, no. 2, p. 026102, Jul 13 2007, doi: 10.1103/PhysRevLett.99.026102.
[18] C. L. Freeman, F. Claeyssens, N. L. Allan, and J. H. Harding, "Graphitic nanofilms as precursors to wurtzite films: theory," Phys Rev Lett, vol. 96, no. 6, p. 066102, Feb 17 2006, doi: 10.1103/PhysRevLett.96.066102.
[19] J. Lee, D. C. Sorescu, and X. Deng, "Tunable Lattice Constant and Band Gap of Single- and Few-Layer ZnO," J Phys Chem Lett, vol. 7, no. 7, pp. 1335-40, Apr 7 2016, doi: 10.1021/acs.jpclett.6b00432.
[20] J. Lei, M.-C. Xu, and S.-J. Hu, "Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation," Journal of Applied Physics, vol. 118, no. 10, 2015, doi: 10.1063/1.4930156.
[21] E. Ahilea and A. A. Hirsch, "RESISTANCE OF THIN METAL FILMS GROWN UNDER A LONGITUDINAL ELECTRIC FIELD," J. Appl. Phys., vol. 42, no. 13, pp. 5601-&, 1971, doi: 10.1063/1.1659989.
[22] Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, "Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires," Applied Physics Letters, vol. 94, no. 2, 2009, doi: 10.1063/1.3073042.
[23] E. Monroy, F. Omnès, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors," Semiconductor science and technology, vol. 18, no. 4, p. R33, 2003.
[24] 劉昭勳, "原子層沉積成長之氧化鋅奈米薄膜之載子生命週期," 台灣大學, 碩士論文, 2012.
[25] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," Journal of Applied Physics, vol. 79, no. 10, pp. 7983-7990, 1996, doi: 10.1063/1.362349.
[26] C. Soci et al., "ZnO nanowire UV photodetectors with high internal gain," Nano letters, vol. 7, no. 4, pp. 1003-1009, 2007.
[27] D. A. Neamen, Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill, 2012.
[28] 曾伯憲, "利用原子層沉積法成長出高品質摻鋁氧化鋅薄膜於矽光學元件之應用," 新竹教育大學, 碩士論文, 2016.
[29] H. Lanyon and R. A. Tuft, "Bandgap narrowing in moderately to heavily doped silicon," IEEE Transactions on Electron Devices, vol. 26, no. 7, pp. 1014-1018, 1979.
[30] 孫晟維, "矽/石墨烯/氧化鋅異質接面電晶體之研究," 清華大學, 碩士論文, 2018.
[31] E. Muchuweni, T. S. Sathiaraj, and H. Nyakotyo, "Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis," Ceramics International, vol. 42, no. 8, pp. 10066-10070, 2016, doi: 10.1016/j.ceramint.2016.03.110.
[32] M. W. Allen, S. M. Durbin, and J. B. Metson, "Silver oxide Schottky contacts on n-type ZnO," Applied Physics Letters, vol. 91, no. 5, 2007, doi: 10.1063/1.2768028.
[33] Y. Liu et al., "Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions," Nature, vol. 557, no. 7707, pp. 696-700, May 2018, doi: 10.1038/s41586-018-0129-8.
[34] 吳承平, "新穎矽/石墨烯/單層氧化鋅異質接面電晶體之製作與特性研究," 清華大學, 碩士論文, 2019.
[35] 蘇秉國, "石墨烯異質接面電晶體的特性研究," 清華大學, 碩士論文, 2018.
[36] S. Vaziri et al., "A graphene-based hot electron transistor," Nano Lett, vol. 13, no. 4, pp. 1435-9, Apr 10 2013, doi: 10.1021/nl304305x.