簡易檢索 / 詳目顯示

研究生: 童冠傑
Tung, Kuan Chieh
論文名稱: 以社群媒體為考量之選舉預測
Predicting Elections Based on Social Media
指導教授: 陳良弼
Arbee L. P. Chen
口試委員: 吳宜鴻
Wu, Yi Hung
柯佳伶
Koh, Jia Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 44
中文關鍵詞: 選舉預測事件偵測語意分析關聯式規則分類社群媒體
外文關鍵詞: Election prediction, Event Detection, Sentiment Analysis, Sequential classification rule mining, Social Media
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 選舉預測在近幾年來是個熱門的研究議題。然而,在過去的研究裡,預測勝敗選的方法都是只有單純統計tweets提到候選人的篇數或是計算tweets提到候選人的正負面篇數比例。候選人的輸或贏是由很多原因造成的,例如這位候選人有發生醜聞、賄選、社會議題或是政見等等。因此在這篇論文中,我們提出一個新的觀點,想要從與候選人有關的議題事件來預測選舉結果。希望能夠找出選舉預測規則如下: 對一個候選人來講,在選舉前只要有這一連串的事件發生 “(大事件, 正面影響) → (小事件, 負面影響) → (大事件, 正面影響)”,那這位候選人就會贏得此次選舉。我們提出四種產生事件序列的方法並且利用關聯式分類模型來預測選舉結果。實驗結果顯示我們提出的方法有不錯的表現。在大部分的情況下,我們的預測準確率都超過80%


    Election prediction has been studied in the recent years. However, the previous works focus on counting the number of tweets mentioning candidates to predict the election result. Many reasons cause candidates to win or lose in an election, such as political opinions, social issues, scandals and other reasons. In this paper, we consider a novel viewpoint to predict election results. For a candidate, if the following event sequence happened, “(big event, positive) → (small event, negative) → (big event, positive)”, this candidate will win the election. We consider four approaches to generate the above sequences and then apply the rule-based classifier for predict the election results. A series of experiments are performed to evaluate our approaches and the experiment results reveal that the accuracy of our approaches on predicting election results is over 80% in most of the cases.

    Acknowledgement 1 Abstract 2 摘要 3 Table of Contents 4 List of Figures 5 1. Introduction 6 2. Related Works 11 3. The proposed approach 14 3.1 Data Model Constructor 15 3.2 Event Detection 17 3.3 Sentiment Analysis 18 3.4 Type of Event discussion 21 3.5 Sequential Classification Rules 24 4. Experiments 28 4.1 Experimental Settings 28 4.2 Sequence Generation Evaluation 29 4.3 Event Detection Parameter Discussion 31 4.4 Predict result evaluation 33 4.5 The summarization on 2014 Taiwan Mayor election 40 5. Conclusions 42 Reference 43

    [BK12] A. Boutet, H. Kim, and E. Yoneki, “What’s in Your Tweets? I Know Who You Supported in the UK 2010 General Election,” Proceedings of the International Conference on Weblogs and Social Media (ICWSM’12), 2012.
    [CG11] M. D. Conver, B. Goncalves, J. Ratkiweicz, A. Flammini, F. Menczer, “Predicting the Political Alignment of Twitter Users,” Proceedings of the IEEE Conference on Social Computing (SocialCom’11), 2011.
    [FB13] Clay Fink, Nathan Bos, Alexander Perrone, Edwina Liu, and Jonathon Kopcky, “Twitter, Public Opinion, and the 2011 Nigerian Presidential Election,” Proceedings of the IEEE Conference on Social Computing (SocialCom’13), 2013.
    [GM09] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski and L. Brilliant, “Detecting Influenza Epidemics using search engine query data”, Proceedings of the Nature, 2009.
    [GS13] Manish Gaurav, Amit Srivastava, Anoop Kumar, Scott Miller “Leveraging candidate popularity on Twitter to predict election outcome,” Proceedings of the 7th Workshop on Social Network Mining and Analysis (SNAKDD’13), pp. 1-7, 2013.
    [JJ01] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M. Hsu “PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth.” Proceedings of the International Conference on Data Engineering (ICDE’01), pp.215-224, 2001.
    [LH98] B. Liu, W. Hsu, and Y. Ma, “Integrating Classification and Association Rule Mining”, Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD’98), 1998.
    [LH01] W. Li, J. Han, and J. Pei, “CMAR: Accurate and efficient classification based on multiple class-association rules”, Proceedings of the International Conference on Data Mining (ICDM'01), pp. 369-376, 2001.
    [LW15] Z. Luo, Y. Wang, X. Wu, W. Cai, T. Chen, “On Burst Detection and Prediction in Retweeting Sequence,” Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’15), pp. 96-107, 2015.
    [LX13] C. Liu, R. Xu, L. Gui, “Burst events detection on micro-blogging,” Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC’13), pp. 1921-1924, 2013.
    [MR13] A. Makazhanov and D. Rafiel, “Predicting Political Preference of Twitter Users,” Proceedings of the International Conference on Advances in Social Network Analysis and Mining (ASONAM’13), 2013.
    [OB13] S. O’Banion and L. Birnbaum, “Using Explicit Linguistic Expressions of Preference in Social Media to Predict Voting Behavior,” Proceedings of the International Conference on Advances in Social Network Analysis and Mining (ASONAM’13), 2013.
    [SO10] T. Sakaki, M. Okazaki and Y. Matsuo, “Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors,” Proceedinds of the International Conference on World Wide Web (WWW’10), pp.851-860, 2010.
    [TS10] A. Tumasjan, T. O. Sprenger, P. G. Sandner and I. M. Welpe, “Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment,” Proceedings of the International Conference on Weblogs and Social Media (ICWSM’10), 2010.
    [UL14] Sayan Unankard, Xue Li, Mohamed A. Sharaf, Jiang Zhong, Xueming Li, “Predicting Elections from Social Networks Based on Sub-event Detection and Sentiment Analysis,” Proceedings of the International Conference on Web Information System Engineering (WISE’14), pp. 1-16, 2014.
    [XY03] X. Yin, J. Han, “CPAR: Classification based on predictive association rule,” Proceedings of the SIAM International Conference on Data Mining (SIAM’03), pp. 369-376, 2003.
    [XZ13] W. Xie, F. Zhu, J. Jiang, E.-P. Lim, and K. Wang, “Topicsketch : Real-time bursty topic detection from twitter,” Proceedings of the 13th International Conference on Data Mining(ICDM’13), pp. 837–846, 2013.
    [YL13] T. Yang, D. Lee and S. Yan, “Steeler nation, 12th man, and boo birds: classifying Twitter user interests using time series,” Proceeding of the International Conference on Advances in Social Network Analysis and Mining (ASONAM’13), pp. 684-691, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE