簡易檢索 / 詳目顯示

研究生: 梁書豪
Liang, Shu-Hao
論文名稱: 應用在燃料電池的甲醇濃度感測方法研究
A Study of Methanol Concentration Sensing Methods for Direct Methanol Fuel Cell Applications
指導教授: 蔡春鴻
Tsai, Chuen-Horng
葉宗洸
Yeh, Tsung-Kuang
劉炯權
Liu, Chung-Chiun
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 135
中文關鍵詞: 燃料電池甲醇感測器直接甲醇燃料電池
外文關鍵詞: FUEL CELL, METHANOL, SENSOR, DFMC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的甲醇濃度感測方法研究,主要是針對水溶液中的甲醇濃度偵測,特別是微小型高分子質子交換膜直接甲醇燃料電池(direct methanol fuel cell, DMFC) 的應用。DMFC的技術瓶頸之一為甲醇會從陽極滲透至陰極,在陰極產生的氧化反應會造成電位降低與電池整體效能的衰退。一些研究報告指出,低濃度的甲醇可降低甲醇的滲透現象及和緩電池效能下降的情況。因此甲醇濃度感測技術與DMFC的發展有緊密的關聯性,也是引發本研究的初始動機。
    研究基本上分為兩個階段:第一階段為相關研究的文獻回顧,並藉由一般甲醇感測器的驗證實驗、甲醇滲透率量測,進行研究理論基礎的分析探討;第二階段則是創新概念的實驗研究,包含平面式電極設計的氧化鋁基材、矽基材兩種元件的實驗探討。綜觀目前常用的各種甲醇濃度偵測技術,包括利用物理、化學性質等各種方法,在微小尺寸的燃料電池系統都不太適用,而且感測器不能消耗過多能量,構造也不能夠太複雜。因此本文實驗乃選擇以電化學感測為研究的方向。
    實驗主要目標是要利用電化學的特性偵測甲醇濃度,發展一個構造簡單的甲醇感測器。電化學槽(cell)的設計是以金屬薄膜構成的平面金屬電極,加上高分子膜的固態電解質薄膜,藉由阻抗(EIS)、循環伏安法等電化學技術分析,瞭解不同的甲醇濃度會有不同程度的電化學反應,進一歩分析靈敏度(sensitivity)等感測性能。此外,在德國Forschunszeentrum Juelich研究中心,合作進行的甲醇滲透率(permeation rate) 量測實驗,則有助於實際甲醇感測解析度(resolution)與感測範圍(range)需求的瞭解,當然也可以間接推測甲醇濃度變化。
    本研究的結果顯示以氧化鋁基材的感測元件,甲醇氧化電流的感測靈敏度(sensitivity)可以達到~0.01mA/mole (or 0.1mA/mole 氫脫附電流),偵測範圍(range)則是在0.5M~2M。證明了平面電極加上固態電質,藉由電流強度作為感測甲醇濃度的理論是可行的。而在以矽晶圓為基材的元件,則可以辨別甲醇濃度0.5M~1.5M的差異。雖然訊號較氧化鋁基材為弱(~0.01mA/mole),但是若以微機電製程技術為基礎在訊號靈敏度應可有效改進,而且在建構系統時的製程整合性較佳。此一創新概念可作為未來微型甲醇燃料電池系統發展的一項參考。


    This thesis focuses on the development of sensors for the determination of aqueous methanol concentration in direct methanol fuel cell (DMFC) applications. The crossover of methanol from anodic compartment to the cathodic compartment and its subsequent oxidation in the cathodic compartment is the main reason for the low efficiency of DMFC, which is yet to be solved in the current DMFC technology. DMFC operated at controlled low concentration methanol feed is one of the approaches to avoid the cell voltage loss due to methanol crossover. Such an operation needs the development of a suitable methanol sensor which motivates the present study.
    The study consists of two major parts. In the first part, literature overview of DMFC, methanol crossover problem, methods to circumvent the methanol crossover are discussed. Apart from this, salient features of various methanol detection methods and the necessary features of a methanol sensor are discussed. Then, rationales for the selection of electrochemical sensor development as the subject matter are presented.
    Fabrication and operation of a fuel cell based sensor is presented in chapter 3. Even though, the sensitivity of the fuel cell based sensor is adequate for the methanol concentration in the range of 0.5 M to 1.5M, higher power consumption and bigger size are the problems with this design. Operating experience with the conventional methanol detection techniques like densitometer and refractive index detector showed the shortcomings of these techniques.
    An innovative concept of solid state planar structured methanol sensor design is introduced in chapter 4. Thick film screen printing process was used to print the gold working and counter electrodes on alumina substrate and process for the formation of the Ag/AgCl reference electrode was also developed. A thick recast Nafion film was the electrolyte. The sensor was characterized by Electrical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV). The experimental results revealed that either hydrogen desorption (peak at ~0.22 VSHE) or methanol oxidation (~1.0 VSHE) could be used to evaluate the methanol concentration. The device should be used for the estimation of methanol concentration at 0.01mA/M by methanol oxidation current (or 0.1 mA/M by hydrogen desorption current) in the range of 0.5M to 2M.
    Silicon based microfabrication is introduced in chapter 5. This has the advantage of producing microsized structures in highly uniform and geometrically well defined manner. Platinum working and counter electrodes were prepared by sputtering. The process for the formation of recast nafion electrolyte film was the same as alumina-based device. The sensor could be used to monitor methanol concentration from the methanol oxidation current. The current linearly increased with methanol concentration in the range 0.5 to 1.5M (with 0.01mA/mole sensitivity).
    A summary of the work and recommendations for further activities were presented in chapter 6.

    中文摘要.................................................................................................................................................. II ABSTRACT.......................................................................................................................................... III 序 言 / 誌 謝.........................................................................................................................................V ACKNOWLEDGEMENT.................................................................................................................. VII TABLE OF CONTENTS ..........................................................................................................................I LIST OF TABLES..................................................................................................................................V LIST OF FIGURES...............................................................................................................................VI CHAPTER 1 INTRODUCTION......................................................................................................... 1 1.1 GENERAL ASPECTS OF DMFC.................................................................................................... 2 1.2 METHANOL CROSSOVER............................................................................................................ 4 1.2.1 Crossover measurement................................................................................................... 5 1.2.2 Effect of crossover ........................................................................................................... 6 1.2.3 Techniques for reducing crossover .................................................................................. 7 1.3 MOTIVATION FOR THE PRESENT WORK ....................................................................................... 8 1.4 CRITERION OF METHANOL SENSOR FOR MICRO-DMFC.............................................................. 9 1.4.1 Trends in sensor development.......................................................................................... 9 1.4.2 Definition...................................................................................................................... 10 1.5 SELECTION OF A SUITABLE SENSOR .......................................................................................... 11 1.5.1 Prospective sensing methods ......................................................................................... 11 1.5.2 Electrochemical sensors ................................................................................................ 13 1.6 SCHEME.................................................................................................................................. 15 CHAPTER 2 METHODS FOR METHANOL DETECTION........................................................ 18 2.1 APPLICATIONS OF METHANOL SENSORS ................................................................................... 18 2.2 ELECTROCHEMICAL SENSORS .................................................................................................. 20 2.2.1 Electrodes design........................................................................................................... 21 2.2.2 Electrolyte ..................................................................................................................... 23 2.2.3 Fuel cell type sensor - JPL ............................................................................................ 23 2.2.4 Tubular format – H-power Corporation........................................................................ 27 2.2.5 Planar format sensor..................................................................................................... 27 2.2.6 Potentiometric method................................................................................................... 29 2.2.7 Cell potential monitoring .............................................................................................. 29 II 2.3 ALTERNATIVE METHODS .......................................................................................................... 30 2.3.1 Refractive index detector............................................................................................... 30 2.3.2 Ultrasonic sensor .......................................................................................................... 32 2.4 COMPARISON OF SANDWICH AND PLANAR FORMAT.................................................................. 32 2.4.1 Conductivity Measurement ............................................................................................ 33 2.4.2 Equivalent circuit model................................................................................................ 35 2.4.3 Cyclic voltammetry........................................................................................................ 37 2.5 INTERFERENCE........................................................................................................................ 37 2.6 CONCENTRATION DETECTION RANGE....................................................................................... 38 2.7 MEMS APPLICATIONS.............................................................................................................. 39 CHAPTER 3 PRIMARY TRIALS AND PRACTICES................................................................... 40 3.1 PRINCIPLE OF AMPEROMETRIC DETECTORS .............................................................................. 40 3.2 HOMEMADE FUEL CELLS.......................................................................................................... 42 3.2.1 Apparatus ...................................................................................................................... 42 3.2.2 Measurement ................................................................................................................. 43 3.2.3 Effect of temperature ..................................................................................................... 44 3.2.4 Conclusion..................................................................................................................... 46 3.3 PROTOTYPE METHANOL SENSOR .............................................................................................. 46 3.3.1 Apparatus ...................................................................................................................... 47 3.3.2 Measurement ................................................................................................................. 48 3.3.3 Summary........................................................................................................................ 50 3.4 METHANOL PERMEATION MEASUREMENT ................................................................................ 50 3.4.1 Apparatus ...................................................................................................................... 50 3.4.2 Diffusion Factor ............................................................................................................ 51 3.4.3 Concentration measurement by density meter............................................................... 52 3.4.4 Practical operation of DMFC ....................................................................................... 54 3.4.5 Concentration offset ...................................................................................................... 55 3.5 PRACTICAL INSTRUMENTS ....................................................................................................... 56 3.5.1 Density Meter ................................................................................................................ 56 3.5.2 Refractive Index Detector.............................................................................................. 57 3.6 SUMMARY............................................................................................................................... 59 CHAPTER 4 ALUMINA-BASED DEVICE.................................................................................... 61 4.1 INTRODUCTION....................................................................................................................... 61 4.2 CONFIGURATION OF SENSOR .................................................................................................... 62 4.2.1 Format and ventilation.................................................................................................. 63 4.2.2 Sensor geometry ............................................................................................................ 64 4.2.3 Reference electrode ....................................................................................................... 66 4.3 SUBSTRATES FABRICATION ...................................................................................................... 66 4.3.1 Thick film printing ......................................................................................................... 67 III 4.4 CHLORIDIZATION ..................................................................................................................... 69 4.5 PREPARATION OF NAFION MEMBRANE ..................................................................................... 70 4.5.1 Paste and paint membrane ............................................................................................ 70 4.5.2 Preparation of casting solution ..................................................................................... 71 4.5.3 Substrates with cover plate............................................................................................ 73 4.5.4 Electrochemical characterization of the sensor ............................................................ 74 4.6 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY .................................................................... 75 4.6.1 EIS of recast membrane................................................................................................. 76 4.6.2 Comparison of different configuration .......................................................................... 79 4.6.3 Effect of membrane thickness ........................................................................................ 80 4.6.4 Impedance in presence of methanol .............................................................................. 82 4.7 CYCLIC VOLTAMMETRY........................................................................................................... 83 4.7.1 Apparatus ...................................................................................................................... 83 4.7.2 Membranes function examination ................................................................................. 84 4.7.3 Essential scans .............................................................................................................. 85 4.7.4 Effects of impurities....................................................................................................... 87 4.7.5 Accuracy of the fabrication process .............................................................................. 88 4.7.6 Upward and downward concentration detection........................................................... 89 4.8 FABRICATION RELIABILITY....................................................................................................... 91 4.9 ADDITION OF STRONG ELECTROLYTES ..................................................................................... 92 4.10 EFFECT OF TEMPERATURE........................................................................................................ 94 4.11 CORROSION AND BUBBLES....................................................................................................... 96 4.11.1 Recovery capability ....................................................................................................... 98 4.12 LIFE TIME TESTING................................................................................................................... 98 4.13 SUMMARY............................................................................................................................... 99 CHAPTER 5 SILICON-BASED DEVICE..................................................................................... 101 5.1 INTRODUCTION..................................................................................................................... 101 5.2 CONFIGURATIONS .................................................................................................................. 102 5.2.1 Schematic of DMFC and sensor.................................................................................. 103 5.3 INTEGRATION OF METHANOL SENSOR AND DMFC................................................................. 104 5.4 MEMS FABRICATION............................................................................................................. 105 5.4.1 Mask design................................................................................................................. 106 5.4.2 Recast membrane ........................................................................................................ 107 5.4.3 Wiring and sealing....................................................................................................... 108 5.5 ELECTROCHEMICAL CHARACTERISTICS OF THE DEVICE IN THE ABSENCE OF MEMBRANE ....... 108 5.5.1 Examination of the tested electrodes ........................................................................... 110 5.6 CV MEASUREMENT................................................................................................................ 111 5.7 REFERENCE ELECTRODE ........................................................................................................ 113 5.7.1 Silver electroplating .................................................................................................... 113 5.7.2 Chloridization.............................................................................................................. 115 IV 5.8 CONCLUSION AND APPLICATIONS........................................................................................... 115 5.8.1 Signals processing ....................................................................................................... 116 5.8.2 Fabrications consideration ......................................................................................... 117 5.9 SUMMARY............................................................................................................................. 118 CHAPTER 6 SUMMARY AND DISCUSSION............................................................................. 120 6.1 ELECTROCHEMICAL SENSOR ASSESSMENT ............................................................................. 121 6.1.1 Conventional fuel cell type of sensor........................................................................... 121 6.1.2 Alumina-based device.................................................................................................. 122 6.1.3 Silicon-based device .................................................................................................... 123 6.2 RECENT DEVELOPMENT ......................................................................................................... 123 6.2.1 Methanol permeation .................................................................................................. 124 6.3 FURTHER WORK ..................................................................................................................... 124 6.4 SUMMARY............................................................................................................................. 125 REFERENCES.................................................................................................................................... 126

    References
    1 Dimitrova P., Friedrich K., Stimming U., and Vogt B., “Recast Nafion-based
    membranes for methanol fuel cells”, Proceeding of the First European PEFC
    Form-Lucerne, pp. 97-107, 2001
    2 Choi W. C., Kim J. D., and Woo S. I., “Modification of proton conducting membrane
    for reducing fuel crossover in a direct methanol fuel cell”, Journal of Power Source,
    Vol.96, p.411-414, 2001
    3 Yoon S.R., Hwang C.H., Cho W.I., Oh I-H., Hong S-A., and Ha H.Y., “Modification of
    polymer electrolyte membrane for DMFC using Pd films formed by sputtering”, Journal
    of Power Source, 106, p.215-223, 2002.
    4 NASA Tech Briefs, p.38-40, January 2005
    5 Fuqiang Liu, Guoqiang Lu, and Chao-Yang Wang, Journal of The Electrochemical
    Society, Vol.153 (3), A543-A553, 2006
    6 Wolf Vielstich, Hubert A. Gasteiger, Aronld Lamm (Ed), Handbook of Fuel Cells, Vol. 3,
    Chapter 58, John Wiley & Sons, Ltd, 2003
    7 James Larminie, Andrew Dicks, Fuel Cell Systems Explained, 2nd edition, p.157, John
    Wiley & Sons, Ltd, 2003
    8 S. Gottesfeld (ed.), Proceeding of the first international symposium on Proton
    Conducting Membrane Fuel Cells I, Proceeding Vol. 95-23, The Electrochemical
    Society, Inc., 1995
    9 Refer to the website of Dr. Scott Calabrese Barton:
    http://www.columbia.edu/~jg2286/research/
    10 Dohle H., Schmitz H., Bewer T., Mergel J., and Stolten D., Journal of Power Sources,
    Vol.106, p313-322, 2002
    11 Shukla A.K., Christensen P.A., Dickinson A.J., and Hamnett A, Journal of Power
    Sources, Vol. 76, p54-59, 1998
    12 Scott K. Taama W.M., Argyroulouos P., and Sundmacher K., Journal of Power Sources,
    Vol.83, p.204-216, 1999
    13 J. Cruickshank, K. Scott, The degree and effect of methanol crossover in the direct
    methanol fuel cell, Journal of Power source 70, p.40-47, 1998.
    127
    14 Gottesfeld S., “Development and demonstration of direct methanol fuel cells for
    consumer electronics applications.”, The Fuel Cell World-Proceedings, Lucerne, EFCF,
    p.35-41, 2002
    15 I. Jung, D. Kim, Y. Yun, S. Chung, J. Lee, Y. Tak, “Electro-oxidation of methanol
    diffused through proton exchange membrane on Pt surface: crossover rate of methanol,
    Electrochimica Acta, 50, p.607-610, 2004.
    16 Gregor Hoogers, Fuel cell technology handbook, CRC Press, 2003.
    17 Xiaoming Ren, Piotr Zelenay, Sharon Thomas, John Davey, Shimshon Gottesfeld,
    Journal of Power Sources, Vol. 86, p.111-116, 2000
    18 Choi W.C., Kim J.D., and Woo S.I., ”Modification of proton conducting membrane fro
    reducing fuel crossover in a direct methanol fuel cell”, Journal of Power Sources, vol.96,
    p.411-414, 2001
    19 Yoon S.R., Hwang C.H., Cho W.I., Oh I-H., Hong S-A, and Ha H.Y., “Modification of
    polymer electrolyte membrane fro DMFC using Pd films formed by sputtering’, Journal
    of Power Sources, vol.106,p.215-223, 2002
    20 Demitrova P., Friedrich K., stimming U., and Vogt B., “Recast Nafion-based
    membranes for methanol fuel cells ”, Proceeding of the First European PEFC
    Forum-Lucerne, p.97-107, 2001
    21 N. Miyake, J.S. Wainwright, R.F. Savinell, Journal of the Electrochemical Society,
    vol.148, A898, 2001
    22 N. Miyake, J.S. Wainwright, R.F. Savinell, Journal of the Electrochemical Society,
    vol.148, A905, 2001
    23 Dohle H.; Mergel J., and Stolten D., Journal of Power Sources, Vol.111, p.268–282,
    2002
    24 Frank Zee; Jack Judy, “MEMS chemical gas sensor”, Proceedings of the Biennial
    University/Government/Industry Microelectronics Symposium, 13th, Minneapolis, June
    20-23, 1999, p. 150-152
    25 Methanol sensor, Detcon Inc, USA, refer to http://www.detcon.com
    26 Xiang-Shan Zhou, Jian Lu, Wei-Min Fan, and Yuan-Xing Zhang, Bitechnology Letters,
    Vol. 24, p.643-646, 2002
    27 The data refer to the specification of Sony-Ericsson Z800/V800 type lithium-ion
    battery.
    128
    28 Dermot Diamond (Ed), Principles of Chemical and Biological Sensors, p.9, John Wiley
    & Sons, Inc., New York, 1998
    29 Products and applications information at http://us.mt.com
    30 D. Sparks, R. Schneider, R. Smith, A. Chimbayo, M.Straayer, J. Cripe, N. Najafi,
    Sensor Expo & Conference, Chicago, IL, Spring 2003
    31 Noboru Yamazoe (Ed), Chemical Sensor Technology, Vol. 3, p.105, Kodanaha Ltd.,
    Tokyo, 1991
    32 Frank Zee; Jack Judy, “MEMS chemical gas sensor”, Proceedings of the Biennial
    University/Government/Industry Microelectronics Symposium, 13th, Minneapolis, June
    20-23, 1999, p. 150-152
    33 Methanol sensor, Detcon Inc, USA, refer to http://www.detcon.com
    34 Xiang-Shan Zhou, Jian Lu, Wei-Min Fan, and Yuan-Xing Zhang, Bitechnology Letters,
    Vol. 24, p.643-646, 2002
    35 Methanol sensor system, Raven Biotech Inc, USA, refer to
    http://www.ravenbiotech.com
    36 S. A. C. Barton, B. L. Murach, T. F. Fuller, A. C. West, “A Methanol Sensor for Portable
    Direct Methanol Fuel Cells”, Journal of the Electrochemical Society, Vol. 145, No.11,
    November 1998
    37 Plinio Innocenzi, Alessandro Martucci, Massiomo Guglielmi, Andrea Bearzotti, Enrico
    Traversa, Jean Calaude Pivin, Journal of the European Ceramic Society, vol.21,
    p.1985-1988, 2001
    38 Thiago R.L.C. Paixão, Dennys Corbo, Mauro Bertotti, “Amperometric determination of
    ethanol in beverages at copper electrodes in alkaline medium”, Analytica Chimica Acta ,
    vol. 472, p.123–131, 2002
    39 Sreekrishna K, Kropp KE, Pichia pastoris. In: Wolf K, eds., Non-Conventional Yeast in
    Biotechnology: A Handbook. Berlin:Springer-Verlag, p.203-253, 1996
    40 Xiang-Shan Zhou, Jian Liu, Wei-Min Fan, and Yuan-Xing Zhang, “Development of a
    responsive methanol sensor and its application in Pichia pastoris fermentation”,
    Biotechnology Letters, vol.24, p.643-646, 2002
    41 Petr Skla´dal, Natalya O. Morozova, Anatoly N. Reshetilov, “Amperometric biosensors
    for detection of phenol using chemically modified electrodes containing immobilized
    bacteria”, Biosensors and Bioelectronics, vol.17, p.867-873, 2002
    42 Raven Biotech Inc., refer to the website: http://www.ravenbiotech.com
    129
    43 Smart Fuel Cell GmbH, refer to the website: www.efou.com
    44 S.R. Narayanan, T.I. Valdez, and W. Chun, “Design and operation of an electrochemical
    methanol concentration sensor for direct methanol fuel cell systems”, Electrochemical
    and Solid-State Letters, vol.3, (3), p.117-120, 2000
    45 Bostaph, Joseph W., Koripella, Chowdary R., Fisher, Allison M., “Direct methanol fuel
    cell system including an integrated methanol sensor and method of fabrication”,
    Motorola, Inc., United States Patent Application: 20020076589, June 20, 2002; US
    Patent: 66696189.
    46 Peter T. Kissinger, William R. Heineman, Laboratory Techniques in Electro-analytical
    Chemistry, Commonwealth University, Richmond, Virginia, p.268, 1996
    47 C.W. Lin, B.J. Hwang, C.R. Lee, “Methanol sensor based on the conductive polymer
    composites from polypyrrole and poly (vinyl alcohol), Material Chemistry and Physics,
    55, p.139-144, 1998.
    48 Dupont Product Information, Document no. NAE 101, Feb 2004
    49 NASA’s Jet Propulsion Laboratory, refer to www.nasatech.com under the Physical
    Science category
    50 Refer to the website (Dr. Cristina Amon's group):
    http://www.ices.cmu.edu/amon/Projects/fuelCells.html
    51 Zhigang Qi, Chunzhi He, Mark Hollett, Alan Attia, and Arthur Kaufman,
    Electrochemical and Solid-State Letters, 6, (5), p.A88-A90, 2003
    52 Roger J. Mortimer, Alison Beech, Journal of the Electrochemical Society, vol. 147,(2),
    p.780-786, 2000.
    53 G.E. Wnek, J.N. Rider, J.M. Serpico, A.G. Einset, S.G. Ehrenberg, T.N. Tangredi, and L.
    Raboin, in Proceedins of the 1st International Symposium on Proton Conducting
    Membrane Fuel Cells, S. Gottesfeld, G. Halpert, and A. Landerebe, Editors, PV 95-23,
    p.247, The Electrochemical Society Proceedings Series, Pennington, NJ 1995
    54 C. Karuppaiah, J.N. Rider, and G.E. Wnek, p.411, Abstracts of Papers of the American
    Chemical Society, Vol.211, Pt. 2, 1996, ACS, Washington, DC, 1996
    55 Nookala Munichandraiah, Kimberly McGrath, G.K. Surya Prakash, Robert Aniszfeld,
    and George A. Olah, Journal of Power Sources, Vol.117, p.98-101, 2003
    56 T. Kumagai, T. Horiba, T. Kamo, S. Takeuchi, K. Iwamoto, K. Kitami, Ans K. Tamura,
    U.S. Patent no. 4,810,597, 1989
    130
    57 Refractive Index Detectors, Manual K-2401, Knauer, Berlin, Germany, 11/2004, refer to
    www.knauer.net
    58 S.R. Yoon, G.H. Hwang, W.I. Cho, I.H. Oh, S.A. Hong, H.Y. Ha, Journal of Power
    Source, Vol.106, p.215-223, 2002
    59 R. Jiang, D. Chu, Electrochemical and Solid-State Letter, Vol.5, p.A156, 2002
    60 S.R. Narayanan, H. Frank, B. Jeffries-Nakamura, M. Smart, W. Chun, and G. Halpert, in
    Proceeding of the first international symposium on Proton Conducting Membrane Fuel
    Cells I, Proceeding Vol. 95-23, The Electrochemical Society, Inc., p.278-283, 1995
    61 Xiaoming Ren, Thomas A. Zawodzinski Jr., Francsisco Uribe, Hongli Dai, and
    Shimshon Gottesfeld, in Proceeding of the first international symposium on Proton
    Conducting Membrane Fuel Cells I, Proceeding Vol. 95-23, The Electrochemical
    Society, Inc., p.284-293, 1995
    62 Arnold Rabinovich, Daryl Tulimieri, “Ultrasound sensing of concentration of
    methanol's aqueous solution”, United States Patent Application: 20030121315, July 3,
    2003
    63 Bernd Heening, Peter-Christoph Daur, Stefan Prange, Karsten Dierks, Peter Hauptmann,
    Ultrasonics, vol.38, p.799-803, 2000
    64 J.H. Shim, I.G. Koo, and W.M. Lee, Electrochemical and Solid-State Letters, Vol.8(1),
    p.H1-H5, 2005
    65 R.G. Linford, Editor, Electrochemical Science and Technology of Polymers, p.17-19,
    Elsevier Applied Science Publishers Ltd., London, 1987
    66 Roger J. Mortimer, Alison Beech, Electrochimica Acta, Vol.47, p.3383-3387, 2002
    67 R.G. Linford, Editor, Electrochemical Science and Technology of polymers, p.281-318,
    Elsevier Applied Science Publishers Ltd., London, 1990
    68 R.S. Chen, P.E. Stallworth, S.G. Greengaum, J.J. Fontanella, and M.C. Wintersgill,
    Electrochim. Acta, 40, p.309, 1995
    69 Philip H. Rieger, in Electrchemistry 2, p.186, Chapman & Hall Inc., New York, 1994
    70 Xiaoming Ren, Thomas A. Zawodzinski Jr., Francisco Uribe, Hongli Dai, and Shimshon
    Gottesfeld, in proceedings of the first international symposium on Proton Conducting
    Membrane Fuel Cells I, Proceedings Vol. 95-23, The Electrochemical Society, Inc.,
    1995
    71 Fuqiang Liu, Guoqiang Lu, and Chao-Yang Wang, Journal of The Electrochemical
    Society, Vol.153, Issue 3, A543-A553, 2006
    131
    72 Ren X., Zelanay P., Thomas S., Davey J., and Gottesfeld S., Journal of Power Sources,
    Vol.86, p.111-116, 2000
    73 Gottesfeld S., “Development and demonstration of direct methanol fuel cells for
    consumer electronics applications.”, The Fuel Cell World – Proceedings, Lucerne,
    EFCE, p.35-41, 2002
    74 H. Dohle, J. Mergel, D. Stolten, Journal of Power Sources, Vol. 111, p.268-282, 2002
    75 D.S. Meng, J. Kim, C.J. Kim, A Distributed Gas Breather For Micro Direct Methanol
    Fuel Cell (m-DMFC), 0-7803-7744-3/03, IEEE, 2003
    76 Y.H. Seo, Y.H. Cho, A Miniature Direct Methanol Fuel Cell Using Platinum Sputtered
    Microcolumn Electrodes With Limited Amount of Fuel, 0-7803-7744-3/03, IEEE, 2003
    77 R.G. Hockaday, Small diffusion driven fuel cells, in Proceedings of the Knowledge
    Fundation’s 5th Annual International Symposium on Small Fuel Cells, New Orleans, LA,
    USA, 7-9 May, 2003
    78 K.B. Min, S. Tanaka, M. Esashi, Electrochemistry, Vol.70, p.924, 2002
    79 Shinji Motokawa, Mohamed Mohamedi, Toshiyuki Momma, Shuichi Shoji, Tetsuya
    Osaka, Electrochemistry Communications, Vol.6, p.526-565, 2004
    80 J.H. Shim, I.G. Koo, and W.M. Lee, Electrochemical and Solid-State Letters, Vol.8,
    Issue 1, H1-H5, 2005
    81 Scott A. Calabrese Barton, Bryan L. Murach, Thomas F. Fuller, and Alan C. West,
    Journal of The Electrochemical Society, Vol.145, No.11, p.3783-3788
    82 T. Otagawa, S. Zaromb, and J. Stetter, J. Electrochem. Soc., Vol.132, p.2951, 1985
    83 Frank Zee, Jack Judy, in Proceeding of the Biennial University / Government / Industry
    Microeclectronics Symposium, 13th, Minneapolis, p.150-152, Jun 20-23, 1999
    84 NASA’s Jet Propulsion Laboratory, refer to www.nasatech.com under the Physical
    Science category
    85 T. Otagawa, S. Zaromb, and J. Stetter, J. Electrochem. Soc., Vol.132, p.2951, 1985
    86 Jiri Janata, Principles of Chemical Sensors, p.85, Plenum Press, New York, 1989
    87 Jaesung Han, Eun-Sung Park, Journal of Power Sources, Vol. 112, p.477–483, 2002
    88 J.H. Shim, I.G. Koo, and W.M. Lee, Electrochemical and Solid-State Letters, Vol.8(1),
    p.H1-H5, 2005
    89 Refer to the website of the Sheen Instruments Ltd., www.sheeninstruments.com
    90 Roger J. Mortimer, Alison Beech, Electrochimica Acta, Vol.47, p.3383-3387, 2002
    132
    91 M.D. Levi, Y. Gofer, and D. Aurbach, Russian Journal of Electrochmistry, Vol.40, No.3,
    p. 273-279, 2004
    92 S. Nouri, L. Dammak, G. Bulvestre, B. Auclair, European Polymer Journal, Vol.38,
    p.1907-1913, 2002
    93 L. Meites, ed., “Handbook of Analytical Chemistry”, McGraw Hill, New York, 1963.
    94 D.J.G. Ives, G.J. Janz, “Reference Electrodes, Theory and Practice”, Academic Press,
    New York, 1961
    95 K.B. Min, S. Tanaka, M. Esashi, Electrochemistry, Vol.7, p.924, 2002
    96 D. Arrigo Giuseppe, Coffa Salvatore, Spinella R. Corrado, “Micro silicon fuel cell,
    method of fabrication and self-powered semiconductor device integrating a micro fuel
    cell, patent number: EP1258937, also US2003003347
    97 DuPont, Nafion® PFSA membranes, perfluorosulfonic acid polymer product
    information, document no. NAE101, Feb 2004.
    98 Roger J. Mortimer, Alison Beech, Electrochimica Acta, 47, p.3383-3387, 2002
    99 T. J. Kemp (ed.), Instrumental methods in electrochemistry, p.359, John Wiley & Sons,
    New York, 1985
    100 Joseph J. Carr, Sensors and Circuits, p.171, PTR Prentice-Hall, Inc., 1993
    101 Madou, Marc J., Fundamentals of Microfabrication: The Science of Miniatruization,
    2nd ed., CRC Press, p.155, 2002.
    102 Techspray Inc., USA, refer to http://www.techspray.com, part no. 2204-8SQ
    103 J.R. Owen, in Electrochemical Science and Technology of Polymers 1, R.G. Linford,
    Editor, Chapter 3, p.45-66, Elsevier Applied Science Ltd., London, 1987
    104 R.G. Linford, in Electrochemical Science and Technology of Polymers 2, R.G. Linford,
    Editor, Chapter 7, p.281-318, Esevier Science Publishers Ltd., London, 1990
    105 Roger J. Mortimer, Alison Beech, Electrochimica Acta, 47, p.3383-3387, 2002
    106 X. Ren, T.E. Springer, S. Gottesfeld, Journal of The Electrochemical Society, Vol.147
    (1), p.98-98, 2000
    107 Zongwu Bai, Michael F. Durstock, Thuy D. Dang, Journal of Membrane Science,
    accepted 16 April (article in progress), 2006
    108 S. A. C. Barton, B. L. Murach, T. F. Fuller, A. C. West, “A Methanol Sensor for Portable
    Direct Methanol Fuel Cells”, Journal of the Electrochemical Society, Vol. 145, No.11,
    November 1998
    133
    109 S.R. Narayanan, T.I. Valdez, and W. Chun, Electrochemical and Solid-State Letters,
    Vol.3 (3), p.117-120, 2000
    110 Thiago R.L.C. Paixão, Dennys Corbo, Mauro Bertotti, Analytica Chimica Acta, Vol.
    472, p.123–131, 2002
    111 Philip H. Rieger, Electrochemistry, Appendix 3, 2nd ed., p. 441, Chapman & Hall, New
    York, 1993
    112 S.C. Barton, B.L. Murach, T.F. Fuller, and A.C. West, Journal of the Electrochemical
    Society, 145, p.3783-3788, 1998
    113 S.R. Narayanan, T.I. Valdez, and W. Chun, Electrochemical and Solid-State Letter, vol.3,
    p.117, 2000
    114 Z. Qi, C. He, M. Hollett, A. Attia, and A. Kaufman, Electrochemical and Solid-State
    Letters, Vol. 6, A88-90, 2003
    115 J. Prabhuram, R. Manoharan, Journal of Power sources, Vol. 74, p.54-61, 1998
    116 Javier Hern´andez, Jos´e Solla-Gull´on, Enrique Herrero ∗, Antonio Aldaz, Juan M.
    Feliu, “Methanol oxidation on gold nanoparticles in alkaline media: Unusual
    electrocatalytic activity”, Electrochimica Acta xxx (2006) xxx–xxx, accepted 5 March
    2006, article in press
    117 R. Lteif, L. Dammak, C. Larchet, B. Auclair, European Polymer Journal, 35,
    p.1187-1195, 1999.
    118 Philip H. Rieger, Electrochemistry 2nd edit., p.446, Chapman & Hall, Inc, New York,
    1994
    119 C.C. Liu, E. O’Connor, K.P. Strohl, K.P. Klann, G.A. Ghiurcan, G. Hunter, L. Dudik,
    and M. J. Shao, in Microfabricated Systems and MEMS VI, P.J. Hesketh, S.S. Ang, J.L.
    Davidson, H.G. Hughes, and D. Misra, Editors, PV 2002-6, p.1, The Electrochemical
    Society Proceedings Series, Pennington, NJ 2002
    120 C.C. Liu, P.J. Hesketh, and G. W. Hunter, “Chemical Micorsensors”, The
    Electrochemical Society- Interface, vol.13 (2), p.22, Summer 2004
    121 R. Hahna, S. Wagner, A. Schmitz, H. Reichl, Journal of Power Sources, Vol. 131, p.
    73–78, 2004
    122 Shu-Hao Liang, Chuen-Horng Tsai, and Chaug-Liang Hsu, “Micro fabrication design of
    a planar methanol sensor”, Materials Science Forum, Vols. 505-507,p.1069-1074, 2006
    134
    123 S.H. Liang, C.C. Liu, C.H. Tsai, in the meeting of 207th Electrochemistry Society,
    Quebec, 2005.
    124 Philip H. Rieger, Electrochemistry 2nd edit., p.152-158, Chapman & Hall, Inc, New
    York, 1994
    125 Shinji Motokawa, Mohamed Mohamedi, Toshiyki Momma, Shuichi Shoji, Tetsuya
    Osaka, Electrochemistry Communications, Vol.6, p.562-565, 2004.
    126 J.B. Mohler, Electroplating and related processes, Chemical Publishing Co., Inc., New
    York, 1969
    127 Frederick A. Lowenheim (ed.), Modern electroplating, 3rd, Wiley, New York, 1974
    128 賴耿陽譯, 友野里平,青谷薰,今井雄一,川合慧共著,實用電鍍技術全集,復漢出版
    社,七十二年十二月出版
    129 William Blum, George B. Hogaboom, Principles of electroplating & electroforming,
    McGraw-Hill, New. York, 1949
    130 H. Dohle, J. Mergel, and D. Stolten, Journal of Power Sources, Vol. 111, p.268–282,
    2002.
    131 S.R. Narayanan, T.I. Valdez, and W. Chun, Electrochemical and Solid-State Letters,
    Vol.3 (3), p.117-120, 2000
    132 Scott A. Calabrease Barton, Bryan L. Murach, Thomas F. Fuller, and Alan C. West, the
    Journal of Electrochemical Society, Vol. 145, p.3783-3788, 1998
    133 G.Q. Liu, C.Y. Wang, T.J. Yen, X. Zhang, Electrochimica Acta, Vol.49, p.821-828, 2004
    134 R. Hahn, S. Wagner, A. Schmitz, H. Reichl, Journal of Power Sources, Vol.131, p.73-78,
    2004
    135 Hsuang-Jun Huang, Peixing He, and L.R. Faulkner, Analytical Chemistry, Vol.58,
    No.13, 1986
    136 R.F. Wolffenbuttel (Editor), Silicon sensors and circuits :on-chip compatibility, p.58,
    Chapman & Hall, New York, 1996
    137 L. Rayleigh, Phil. Mag., 14, p.184, 1882.
    138 DuPont, Nafion PFSA polymer dispersions product information, document No.
    NAE103, Feb 2004
    139 L. Rayleigh, Phil. Mag., 14, p.184, 1882
    135
    140 E.H. Sanders, K.A. McGrady, G.E. Wnek, C.A. Edmondson, J.M. Mueller, J.J.
    Fontanella, S.Suarez, S.G. Greenbaum, Characterization of electrosprayed Nafion films,
    Journal of Power Source, 129, p55-61, 2004.
    141 法新社新聞稿, updated:2005-09-26 12:00:00 MYT
    142 World Intellectual Property Organization, International Publication Number: WO
    01/35478 A1, 17 May 2001
    143 J.M. Hale, Ultrasonic density measurement for process control, Ultrasonic, Vol. 26, p.
    356, 1988
    144 J.H. Shim, S.M. Song, W.K. Her, I.G. Koo, and W.M. Lee, Journal of The
    Electrochemical Society, Vol. 150, A1583, 2003
    145 Choi W.C., Kim J.D., and Woo S.I., Journal of Power Sources, Vol. 106, p.411-414,
    2001
    146 Jung D.H., Cho S.Y., Peck D.H., Shin D.R., and Kim J.J., Journal of Power Sources, Vol.
    96, p.173-177, 2002
    147 J.H. Shim, I.G. Koo, and W.M. Lee, Electrochemical and Solid-State Letters, Vol.8, 1,
    H1-H5, 2005
    148 Product Bulletin: Methanol Concentration Sensor, Texas Instruments, refer to
    www.spreeta.com, 2005
    149 Methanol Concentration Sensor, Murata Manufacturing Co., Ltd., Japan, date of release:
    September 29, 2005, refer to www.murata.com, 2005
    150 Jacob Fraden, Handbook of Modern Sensors, Springer publication, New York, 1996

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE