研究生: |
蔡佰翰 Pai-Han Tsai |
---|---|
論文名稱: |
以彈性模型為基礎的三維臉部重建 Elastic-Model-Based 3D Facial Reconstruction |
指導教授: |
陳永昌
Yung-Chang Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 臉部重建 、骷髏 |
外文關鍵詞: | facial reconstruction, skull |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臉部重建在犯罪科學與考古學的領域裡所指的是“當發掘到一具未知名的骸骨時,透過專家等眾人的協助來模擬出這骷髏的生前最可能的面孔長相”的一項技術。由於一般傳統的作法會需要大量的時間和專家人力來幫忙處理,再加上因為電腦圖學在近幾年來的迅速發展,因此可以將其運用在此項技術領域上以期望能夠提高工作效率及結果的可信度。
在本篇論文,我們利用彈性模型的概念來處理臉部重建,當模型的某些特定部位發生移動時會使彈性模型內部產生相對應的能量,進而導致其他部分也跟著出現因應的變化,以期望這些變化能夠消瀰初始變動而產生模型內所產生的能量,來使得模型的整體能量能為最小值。
利用頭骨進行斷層掃瞄的資料對其作適當的處理,利用其所處理的結果來建立出頭骨所屬的三維數位模型,並將其與資料庫進行精細的比對以在其中挑選出和頭骨最為相似的面孔參考模型,其將包含臉部的全部組織(骨頭和軟體組織)的模型以參考模型的頭骨部位和所求骸骨進行對位的工作,對位後的結果用來當作參考模型在模擬形變時的初始條件,利用彈性模型的觀念以對位結果來對整體模型進行拉扯的動作,來使得最後變形的結果能讓參考模型內的能量最小,再考慮權重參數來修正體型可能帶來的改變而完成最後的模擬。
In forensic science and archeology, facial reconstruction means the techniques to reconstruct the face of a man from his cadaver. Because of the massive time and labor-intensive processing of the traditional methods, computer graphic techniques have been rapidly developed in recent years to reduce the processing time and to enhance the performance of reconstruction.
In this study, we process the facial reconstruction by adopting an elastic model. The energy generated by the displacement of each point in the model would cause the points in the neighborhood to have the corresponding displacement in order to reduce the total potential energy of the model. The desired result of facial reconstruction is accomplished when the minimum value of the total potential energy of the point set is achieved.
A 3D model of a skull is created from the CT images of the cadaver to be classified. We then choose the best match of the skull model in the database with the skull model of the cadaver as the reference model. The result of the registration between the reference model which includes hard and soft tissues register and skull model of the cadaver is set to be the initial position of the deformation that follows. The goal of deformation is to reduce the total potential energy of the elastic model so that the point set of the model will be finally distributed in the form that achieves the minimum value of the total potential energy. In addition, a weighting parameter is considered to refine the model.
[1] Vanezis P., Blowes R.W., Linney A.D., Tan A.C., Richards R., and Neave R., Application of 3-Dcomputer graphics for facial reconstruction and comparison with sculpting techniques, Forensic Science International 42(1989).
[2] George R.M., Anatomical and artistic guidelines for forensic facial reconstruction, in: M.H. Iscan, R.P. Helmer (Eds.), Forensic Analysis of the Skull, Wiley-Liss, New York, 1993.
[3] Sharom A.W, Vanezis P., Chapman R.C., Gonzales A., Blenkinsop C., and Rossi M.L., Techniques in facial identification: computer-aided facial reconstruction using a laser scanner and video superimposition, International Journal of Legal Medicine 108 (1996).
[4] Arridge S., Moss J.P., Linney A.D., and James D.R., Three-dimensional digitization of the face skull, Journal of Maxillofacial Surgery 13 (1985).
[5] Moss J.P., Linney A.D., Grinrod S.R., Arridge S.R., and James D., A computer system for the interactive planning and prediction of maxillo-facial surgery, American Journal of Orthodontics and Dentalfacial Orthopaedics 9 (1987).
[6] Quatrehomme G., Cotin S., Subsol G., Delingette H., Garidel Y., Grevin G., Fidrich M., Bailet P., and Ollier A., A fully three-dimensional method for facial reconstruction based on deformable models, Journal of Forensic Science 42 (1997).
[7] Alexandre Guimond, Jean Meuniery, and Jean-Philippe Thirion, Average Brain Models: A Convergence Study, Rapport de recherche de l'INRIA.
[8] Krishna Subramanyan and David Dean, A procedure to average 3D anatomical structures, Medical Image Analysis 4 (2000).
[9] Abate A.F., Nappi* M., Ricciardi S., and Tortora G., FACES: 3D FAcial reConstruction from ancient Skulls using content based image retrieval, Journal of Visual Languages and Computing 15 (2004).
[10] Gary E. Christensen, Sarang C. Joshi, and Michael I. Miller, “Volumetric Transformation of Brain Anatomy,” IEEE Trans. Medical Imaging, vol. 16, No. 6, pp. 864-877, Dec. 1997.