簡易檢索 / 詳目顯示

研究生: 呂學龍
Lu, Hsueh-Lung
論文名稱: 過渡金屬硫屬化物異質結構與石墨烯之複合光偵測器
Graphene - TMDC heterostructure hybrid photodetectors
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 李奎毅
Lee, Kuei-Yi
劉昌樺
Liu, Chang-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 88
中文關鍵詞: 石墨烯光偵測器異質結構二維材料二硫化鎢二硒化鎢
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2004 年,英國曼徹斯特大學物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功地在實驗中從石墨中分離出石墨烯,並在2010 獲得諾貝爾獎,近10 年來石墨烯的熱潮席捲了全球,這個神奇材料在資訊、能源、航太、運輸、醫療等產業的相關應用都相繼被提出,2009 年Xia 等人利用機械剝離的石墨烯製備出了第一個石墨烯光感測器,但響應率只有6.1 mA/W。而本論文主要是講述在可見光的範圍下,石墨烯光偵測器光響應率可以達到1000 A/W,且響應時間只有幾個毫秒,有如此高的光響應,可以歸功於底下的TMD 條狀異質結構,石墨烯底下的二硫化鎢與二硒化鎢因其能帶結構為type II 的關係,照光之後光生電子電洞對會被分離,進而利用影像電荷使石墨烯產生n 型與p 型通道,在側向電場的驅動下,產生極大的光電流改變,使此元件成為一個卓越的光偵測器。


    In 2004, physicists Andre Heim and Konstantin Novoselov of the University of Manchester in the United Kingdom successfully separated graphene from graphite in experiments and won the Nobel Prize in 2010. For nearly 10 years ,the graphene craze has swept the world. Related applications of this magical material in the information, energy, aerospace, transportation, medical and other industries have been proposed. In 2009, Xia made the first graphene photodetector using mechanically stripped graphene,but the responsivity is only 6.1 mA/W. And this topic is mainly about in the range of visible light, the responsivity of the graphene photodetector can reach 1000 A/W, and the response time is only a few millimeters. The high responsivity can be attributed to the TMD strips heterostructure below the graphene. Tungsten disulfide and tungsten diselenide under the graphene have a type II energy band structure. The photogenerated electron hole pair will be separated after illumination, and then use image charge to generate n-type and p-type channels in graphene. When Side electric field driven, generate the huge current change , making this device an excellent photodetector.

    Abstract................................... III 論文摘要.................................... IV 目錄....................................... V 第一章序論.................................. 1 1.1 半導體的技術演進與發展. . . . . . . . . . 1 1.2 矽製程的微縮與限制. . . . . . . . . . . . 3 1.3 二維半導體材料發展. . . . . . . . . . . . 5 1.4 半導體光偵測器. . . . . . . . . . . . . . 8 1.5 論文結構. . . . . . . . . . .. . . . . . 10 第二章二維材料簡介........................... 11 2.1 過渡金屬二硫族化物的組成. . . . . . . . . 11 2.1.1 電子能帶. . . . . . . . . . . . . . . 13 2.2 石墨烯基本介紹. . . . . . . . . . . . . . 16 2.2.1 晶體結構. . . . . . . . . . . . . . . . 16 2.2.2 石墨烯電子能帶. . . . . . . . .. . . . . 18 2.2.3 石墨烯在光電元件上的應用. . . . . . . . . 20 第三章材料成長與檢測........................... 23 3.1 化學氣相沉積法製備石墨烯. . . . . . . . . . 23 3.1.1 石墨烯成長設備. . . . . . . . . . . . . . 23 3.1.2 流程與參數. . . . . . . . . . . . . . . . 25 3.1.3 石墨烯拉曼光譜檢測. . . . . . . . . . . . 27 3.2 化學氣相沉積製備二硫化鎢. . . . . . . . .. . 29 3.2.1 實驗設備. . . . . . . . . . . . . . . . . 29 3.2.2 流程與參數. . . . . . . . . . . . . . . . 29 3.2.3 拉曼光譜檢測. . . . . . . . . . . .. . . . 31 3.2.4 光致螢光光譜檢測. . . . . . . . . . . . . . 34 3.3 沿二硫化鎢側向成長二硒化鎢. . . . . . . . . . 36 3.3.1 實驗設備. . . . . . . . . . . . . . . . . 36 3.3.2 流程與參數. . . . . . . . . . . . . . . . 36 3.4 二硫化鎢與二硒化鎢條狀材料檢測與分析. . . . . 39 3.4.1 拉曼光譜檢測. . . . . . . . . . . . . . . 39 3.4.2 光致螢光光譜檢測. . . . . . . . . . . . . 41 3.4.3 原子力顯微鏡與靜電力顯微鏡檢測. . . . . . . 43 第四章元件製程................................. 49 4.1 條狀二硫化鎢與二硒化鎢電晶體製作. . . . . . . 49 4.1.1 使用設備簡介. . . . . . . . . . . . . . . 50 4.1.2 詳細製程步驟與參數. . . . . . . . .. . . . 54 4.2 條狀二硫化鎢與二硒化鎢堆疊石墨烯光偵測器製作. . 57 4.2.1 詳細流程與製程參數. . . . . . . . . . . . . 57 第五章條狀結構電晶體量測與分析............. ....... 61 5.1 電晶體電性量測結果與分析. . . . . . . . . . . . 62 第六章石墨烯光偵測器量測與分析...................... 66 6.1 元件光電特性量測結果與分析. . . . . . . . . . . 68 6.2 掃描式光電流顯微鏡. . . . . . . . . . . . . . 72 6.3 波長改變與元件光響應的關係. . . . . . . . . . . 74 6.4 光響應時間. . . . . . . . . . . . . . . . . . 77 第七章實驗總結與未來展望.......................... 80 參考文獻......................................... 81

    [1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor
    triode,” Phys. Rev., vol. 74, pp. 230–231, July 1948.
    [2] https:// www.researchgate.net/ figure/JohnBardeenWilliamShockleyandWalterBrattainfig1265932780.
    [3] https://commons.wikimedia.org/wiki/File:1stTransistor.jpg.
    [4] https://en.wikipedia.org/wiki/Integratedcircuit.
    [5] https:// www.extremetech.com/ extreme/ 210872extremetechexplainswhatismooreslaw.
    [6] https://kknews.cc/tech/jl362ge.html.
    [7] K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter, A. Ubelis, V. Beni, N. Starodub, R. Yakimova, and V. Khranovskyy “Application of 2d nongraphene materials and 2d oxide nanostructures for biosensing technology,” Sensors (Basel, Switzerland), vol. 16, pp. 223–223, Feb. 2016.
    [8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666–, Oct. 2004.
    [9] Y. Liu, X. Duan, Y. Huang, and X. Duan, “Twodimensional transistors beyond graphene and tmdcs,” Chem. Soc. Rev., vol. 47, no. 16, pp. 6388–6409, 2018.
    [10] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on twodimensional materials,” Nature Nanotechnology, vol. 9, no. 10, pp. 768–779, 2014.
    [11] A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. Castro Neto, “Phosphorene: from theory to applications,” Nature Reviews Materials, vol. 1, no. 11, pp. 16061–, 2016.
    [12] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for highquality graphene electronics,” Nature Nanotechnology, vol. 5, no. 10, pp. 722–726, 2010.
    [13] H. Liu, A. T. Neal, and P. D. Ye, “Channel length scaling of mos2 mosfets,” ACS Nano, vol. 6, pp. 8563–8569, Oct. 2012.
    [14] M. Chhowalla, H. S. Shin, G. Eda, L.J. Li, K. P. Loh, and H. Zhang, “The chemistry of twodimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, no. 4, pp. 263–275, 2013.
    [15] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, “3r phase of mos2 and ws2 outperforms the corresponding 2h phase for hydrogen evolution,” Chem. Commun., vol. 53, no. 21, pp. 3054–3057, 2017.
    [16] H. Yuan, H. Wang, and Y. Cui, “Twodimensional
    layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling,” Acc. Chem. Res., vol. 48, pp. 81–90, Jan. 2015.
    [17] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Advances in Physics, vol. 18, pp. 193–335, May 1969.
    [18] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2hmX2 semiconductors (m = mo, w; x = s, se, te),” Phys. Rev. B, vol. 85, pp. 033305–, Jan. 2012.
    [19] R. van Bremen, K. Vonk, H. J. W. Zandvliet, and P. Bampoulis, “Environmentally controlled charge carrier injection mechanisms of metal/ws2 junctions,” J. Phys. Chem. Lett., vol. 10, pp. 2578–2584, May 2019.
    [20] H. Zhou, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, X. Huang, Y. Liu, N. O. Weiss, Z. Lin, Y. Huang, and X. Duan, “Large area growth and electrical properties of ptype wse2 atomic layers,” Nano Lett., vol. 15, pp. 709–713, Jan. 2015.
    [21] http:// www.physik.fuberlin. de/ einrichtungen/ ag/ agreich/
    lehre/ Archiv/ ss2011/docs/GinaPeschel − Presentation.pdf.
    [22] S. P. Milovanović and F. M. Peeters, “Strained graphene structures: From valleytronics to pressure sensing,” in Nanostructured Materials for the Detection of CBRN, (Dordrecht), pp. 3–17, Springer Netherlands, 2018.
    [23] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., July 1998.
    [24] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point,” Phys. Rev. B, vol. 74, pp. 075404–, Aug. 2006.
    [25] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point,” Phys. Rev. B, vol. 74, pp. 075404–, Aug. 2006.
    [26] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett., vol. 100, pp. 117401–, Mar. 2008.
    [27] T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris, “Role of contacts in graphene transistors: A scanning photocurrent study,” Phys. Rev. B, vol. 79, pp. 245430–, June 2009.
    [28] F. Xia, T. Mueller, Y.m. Lin, A. ValdesGarcia,
    and P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotechnology, vol. 4, no. 12, pp. 839–843, 2009.
    [29] S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, vol. 4, no. 4, pp. 217–224, 2009.
    [30] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growth of largearea graphene films from metalcarbon melts,” Journal of Applied Physics, vol. 108, pp. 094321–, Nov. 2010.
    [31] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, no. 5, pp. 51–87, 2009.
    [32] Y. A. Wu, Y. Fan, S. Speller, G. L. Creeth, J. T. Sadowski, K. He, A. W. Robertson, C. S. Allen, and J. H. Warner, “Large single crystals of graphene on melted copper using chemical vapor deposition,” ACS Nano, vol. 6, pp. 5010–5017, June 2012.
    [33] https://en.wikipedia.org/wiki/Ramans pectroscopy.
    [34] F. Wang, I. A. Kinloch, D. Wolverson, R. Tenne, A. Zak, E. O'Connell, U. Bangert, and R. J. Young, “Straininduced phonon shifts in tungsten disulfide nanoplatelets and nanotubes,” vol. 4, no. 1, pp. 015007–, 2016.
    [35] A. MolinaSánchez and L. Wirtz, “Phonons in singlelayer
    and fewlayer mos2 and ws2,” Phys. Rev. B, vol. 84, pp. 155413–, Oct. 2011.
    [36] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of highquality monolayer ws2 layers on sapphire and imaging its grain boundary,” ACS Nano, vol. 7, pp. 8963–8971, Oct. 2013.
    [37] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of lower symmetry and dimensionality on raman spectra in twodimensional wse2,” Phys. Rev. B, vol. 88, pp. 195313–, Nov. 2013.
    [38] B. Principle and Working, “Chapter,” 2015.
    [39] J. Park, W. Lee, T. Choi, S.H. Hwang, J. M. Myoung, J.H.
    Jung, S.H.Kim, and H. Kim, “Layermodulated synthesis of uniform tungsten disulfide nanosheet using gasphase precursors,” Nanoscale, vol. 7, no. 4, pp. 1308–1313, 2015.
    [40] https:// parksystems.com/ parkspmmodes/ 93dielectricpiezoelectric/ 228electricforcemicroscopyefm.
    [41] https://blog.brukerafmprobes.com/page/8/.
    [42] https://hdl.handle.net/11296/2m9fc8.
    [43] H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2d photodetectors utilizing chemical vapor deposition grown ws2 with graphene electrodes,” ACS Nano, vol. 10, pp. 7866–7873, Aug. 2016.
    [44] T.H.Tsai, Z.Y.Liang, Y.C.Lin, C.C. Wang, K.I.Lin, K. Suenaga, and P.W.Chiu, “Photogating ws2 photodetectors using embedded wse2 charge puddles,” ACS Nano, vol. 14, pp. 4559–4566, Apr. 2020.
    [45] C.H.Liu, Y.C.Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultrabroadband and high responsivity at room temperature,” Nature Nanotechnology, vol. 9, no. 4, pp. 273–278, 2014.
    [46] Y. Zhou, H. Tan, Y. Sheng, Y. Fan, W. Xu, and J. H. Warner, “Utilizing interlayer excitons in bilayer ws2 for increased photovoltaic response in ultrathin graphene vertical crossbar
    photodetecting tunneling transistors,” ACS Nano, vol. 12, pp. 4669–4677, May 2018.
    [47] H. Tan, Y. Fan, Y. Rong, B. Porter, C. S. Lau, Y. Zhou, Z. He, S. Wang, H. Bhaskaran, and J. H. Warner, “Doping graphene transistors using vertical stacked monolayer ws2 heterostructures grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces, vol. 8, pp. 1644–1652, Jan. 2016.
    [48] F. Xia, T. Mueller, R. GolizadehMojarad, M. Freitag, Y.m.
    Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett., vol. 9, pp. 1039–1044, Mar.2009.
    [49] N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, C. Chang, J. Fan, L. Zhang, and J. Wang, “Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets,” Scientific Reports, vol. 5, no. 1, pp. 14646–, 2015.
    [50] M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nature Photonics, vol. 7, no. 1, pp. 53–59, 2013.
    [51] M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gateactivated photoresponse in a graphene pn junction,” Nano Lett., vol. 11, pp. 4134–4137, Oct. 2011.
    [52] M. Freitag, T. Low, and P. Avouris, “Increased responsivity of suspended graphene photodetectors,” Nano Lett., vol. 13, pp. 1644–1648, Apr. 2013.
    [53] N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. JarilloHerrero,
    “Hot carrierassisted intrinsic photoresponse in graphene,” Science, vol. 334, pp. 648–, Nov. 2011.
    [54] X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphenesilicon
    heterojunctions for ultrasensitive photodetection,” Nano Lett., vol. 13, pp. 909–916, Mar. 2013.
    [55] T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for highspeed optical communications,” Nature Photonics, vol. 4, no. 5, pp. 297–301, 2010.
    [56] C.H.Liu, Y.C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultrabroadband and high responsivity at room temperature,” Nature Nanotechnology, vol. 9, no. 4, pp. 273–278, 2014.
    [57] A. Pospischil, M. M. Furchi, and T. Mueller, “Solarenergy
    conversion and light emission in an atomic monolayer pn diode,” Nature Nanotechnology, vol. 9, no. 4, pp. 257–261, 2014.
    [58] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic lightemitting
    diodes based on monolayer wse2 pn junctions,” Nature Nanotechnology, vol. 9, no. 4, pp. 268–272, 2014.
    [59] B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. JarilloHerrero, “Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide,” Nature Nanotechnology, vol. 9, no. 4, pp. 262–267, 2014.
    [60] O. LopezSanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer mos2,” Nature Nanotechnology, vol. 8, no. 7, pp. 497–501, 2013.
    [61] N. PereaLópez, A. L. Elías, A. Berkdemir, A. CastroBeltran,
    H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. LópezUrías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on fewlayered ws2 films,” Adv. Funct. Mater., vol. 23, pp. 5511–5517, Nov. 2013.
    [62] S. KUMAR, N. KAMARAJU, K. S. VASU, and A. K. SOOD, “Femtosecond photoexcited carrier dynamics in reduced graphene oxide suspensions and films,” Int. J. Nanosci., vol. 10, pp. 669–673, Aug. 2011.

    QR CODE