簡易檢索 / 詳目顯示

研究生: 張盛皓
Sheng-Hao Chang
論文名稱: 磁控濺鍍鋇鈣鈦鋯薄膜為高品質電容器於微波頻段特性之研究
Microwave Characteristics of (Ba,Ca)(Ti,Zr)O3 Thin Films Deposited by RF Magnetron Sputtering for High Quality Capacitances
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 127
中文關鍵詞: 鋇鈣鈦鋯微波鎳酸鑭實驗計畫法
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於鐵電薄膜有高介電常數及低介電損耗的特性,尤其在微波頻段時也有不錯的性質,故常應用於微波電容器元件。本實驗我們選用具有高介電常數及低的介電損耗的(Ba,Ca)(Ti,Zr)O3系統之陶瓷材料,一般產業界常用來製作高頻用的Y5V積層陶瓷電容器(multi-layer ceramic capacitors,MLCC)元件,同時為了達到降低成本之目標,常搭配使用鎳銅鋁等卑金屬(BME)當作電極材料,因此必須在還原氣氛下製作來避免金屬氧化,然而介電陶瓷大多以氧化物為主,在還原氣氛下易形成氧空缺而產生自由電子,使得損耗上升,因此須額外添加一些添加劑來想辦法降低損耗,在此是利用價數比鈦少的離子,當取代鈦時會形成acceptor來捕捉自由電子,使損耗下降的想法,來製作微波頻段下高品質高介電常數的薄膜電容器。
    本實驗以磁控濺鍍法,鍍製(Ba1-xCax)(Ti1-yZry)O3 doping Y薄膜,x介在0~0.1之間,y介在0.15~0.25之間,Y添加量介於0~3 at %,鍍膜溫度介在500?C~600?C之間,以LNO/Au/Ti/SiO2/HR-Si 作為基板,最後並嘗試去改變不同Au底電極厚度,微波頻段量測模型採用的是MIM結構同心圓模型,及採用Loss Corrected 修正,並引入DOE實驗計畫來觀察各因子的影響程度,在此假設了一K值(K=ε*Q),來判斷對介電常數以及介電損耗的綜合表現,結果發現溫度的提升以及Ca的添加最能增大K值。


    目錄 第一章 緒論 1 1.1 前言 1 1.2 動機 2 1.3 實驗規劃 2 第二章 文獻回顧 6 2.1 鐵電材料基本性質介紹 6 2.1.1 晶格特性與鐵電材料的特性 6 2.1.2 介電常數與極化 7 2.1.3 介電材料的極化機制 8 2.1.4 介電損失 10 2.1.5 擴散性相變化 12 2.1.6 調變性 12 2.1.7 FoM(figure of merit) 13 2.1.8 鐵電薄膜運用於微波元件的優勢 13 2.2 鈦酸鋇系材料的研究 14 2.2.1 鈦酸鋇晶格結構、介電性質簡介 14 2.2.2 添加物對鈦酸鋇介電性質的影響 15 2.2.3 鋯添加對鈦酸鋇性質的影響 16 2.2.4 鈣添加對鈦酸鋇性質的影響 17 2.2.5 釔添加對鈦酸鋇性質的影響 18 2.2.6 其他添加物 19 2.3 鎳酸鑭導電緩衝層與電極之研究 19 2.3.1 鎳酸鑭導電緩衝層 19 2.3.2 金屬電極與肌膚厚度(skin depth) 19 2.4 高阻值矽基板 21 2.5 高頻的基礎知識與MIM量測模型 21 2.5.1 阻抗 22 2.5.2 高頻的量測模型 23 2.5.3 Loss Corrected 模型 26 2.6 實驗計畫法(Design of Experiment,DOE) 28 2.6.1 DOE簡介 28 2.6.2 實驗因子的篩選 28 2.6.3 直交配列表的介紹與運用 29 2.6.4 變異數分析的介紹與應用 30 第三章 實驗方法與步驟 43 3.1 DOE實驗計畫設計 43 3.1.1 特性要因分析(魚骨圖) 43 3.1.2 實驗因子篩選表 44 3.1.3 因子水準對照表 45 3.1.4 點線圖 46 3.1.5 直交配列表 46 3.1.6 樣本提示卡 47 3.2 靶材的製作 47 3.2.1 鎳酸鑭靶材的製作 47 3.2.2 鋇鈣鈦鋯添加釔靶材的製作 48 3.3 薄膜的製作 50 3.3.1 Au/Ti/SiO2/HR-Si的製備 50 3.3.2 Au下電極的製備 50 3.3.3 LaNiO3(LNO)導電buffer layer 的製備 50 3.3.4 (Ba,Ca)(Ti,Zr)O3(BCTZ)doping Y薄膜的製備 51 3.3.5 Pt、Ag上電極的製備 51 3.4 薄膜分析量測 51 3.4.1 薄膜結構及結晶性分析 51 3.4.2 成份分析 52 3.4.3 膜厚及表面微觀結構分析 52 3.4.4 電性分析 52 3.5 化學分析電子儀 Electron Spectroscope for Chemical Analysis 53 第四章 結果與討論 63 4.1 鎳酸鑭導電緩衝層的探討 63 4.1.1 不同Ni/La比的鎳酸鑭靶材比較 63 4.1.2 不同鎳酸鑭厚度比較 64 4.2 DOE第一階段結果與討論 66 4.2.1 XRD結構分析 66 4.2.2 SEM厚度分析 68 4.2.3 高頻介電常數探討 69 4.2.4 高頻介電損耗探討 71 4.2.5 Loss Corrected 72 4.2.6 低頻電性分析 73 4.2.7 第一階段介電常數與介電損耗的綜合比較與第二階段的規劃 75 4.3 DOE第二階段結果與討論 76 4.3.2 在Ca,Y皆有添加下Zr0.15&Zr0.25時不同溫度比較 76 4.3.1 在固定溫度且有添加Y時Zr0.15&Zr0.25不同Ca含量比較 77 4.3.3 Zr0.25不同Y含量比較 79 4.3.4 第二階段低頻跟高頻比較 81 4.3.5 不同Au底電極厚度 82 4.3.6 K值比較 85 4.4 ESCA成份分析 86 第五章 結論 122 第六章 參考文獻 124

    1. Cramer, N., Philofsky, E., Kammerdiner, L., & Kalkur, T.S. 2004. Low Temperature Deposited Ba0.96Ca0.04Ti0.84Zr0.16O3 Thin Films on Pt Electrodes by Radio Frequency Magnetron Sputtering. Appl. Phys. Lett., 84(No5), 771-773.
    2. Hansen, P., Hennings, D., & Schreinemacher, H. 1998. High-K Dielectric Ceramics from Donor/Acceptor-Codoped (Ba1-xCax)(Ti1-yZry)O3(BCTZ). J. Am. Ceram. Soc., 81(5), 1369-1373.
    3. Cramer, N., Philofsky, E., Kammerdiner, L., & Kalkur, T.S. 2004. Low Temperature Sputter Deposition of Ba0.96Ca0.04Ti0.84Zr0.16O3 Thin Films on Ni Electrodes. Mat. Res. Soc. Symp. Proc., 811, D8.5.1.
    4. Mahmud, A., Kalkur, T.S., & Cramer, N. 2005. RF Magnetron Sputtered Ba0.96Ca0.04Ti0.84Zr0.16O3 Thin Films For High Frequency Applications. Mat. Res. Soc. Symp. Proc., 833, G1.2.1.
    5. Kishi, H., Mizuno, Y., & Chazono, H. 2003. Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives. Jpn. J. Appl. Phys., 42, 1-15.
    6. Moulson, A.J., & Herbert, J.M. 1990. Electroceramics-Materials Properties Application. Chapman & Hall.
    7. Hennings, D., & Schnell, A. 1982. Diffuse Ferroelectric Phase Transitions in Ba(Zr,Ti)O3 Ceramics. J. Am. Ceram. Soc., 65(No. 11), 539.
    8. 林居南. 1990. 添加劑對鈦酸鋇陶瓷電性及相變化之影響. 國立清華大學, 博士論文.
    9. Xu, Y. 1991. Ferroelectric Materials and Their Applications. North-Holland Netherlands.
    10. Shy, H.J., & Wu, T.B. 1998. Structure and Electrical Characteristics of BaZrTiO3 Thin Films Deposited on LaNiO3 Electrode by RF Mangnetron Sputtering Jpn. J. Appl. Phys., 37, 5638-5644.
    11. Yu, Z., Guo, R., & Bhalla, A.S. 2000. Dielectric Behavior of Ba(Ti1-x,Zrx)O3 Single Crystals. J. Appl. Phys., 88(No. 1), 410-415.
    12. Han, Y.H., Appleby, J.B., & Smyth, D.M. 1987. Calcium as an Acceptor Impurity in BaTiO3. J. Am. Ceram. Soc., 70(2), 96-100.
    13. Hennings, D.F.K., & Schreinemacher, H. 1995. Ca-Acceptors in Dielectric Ceramics Sintered in Reducive Atmospheres. J. Eur. Ceram. Soc., 15, 795-800.
    14. Sen, S., & Choudhary, R.N.P. 2004. Effect of Doping Ca Ions on Structural and Electrical Properties of Ba(Zr0.05Ti0.95)O3 Electroceramics. J. Mater. Sci. : Mater. Electroceram., 15, 671-675.
    15. Zhuang, Z.Q., Harmer, M.P., & Smyth, D.M. 1987. The Effect of Octahedrally-Coordinated Calcium on Ferroelectric Transition of BaTiO3. Mat. Res. Bull., 22, 1329-1335.
    16. Jeong, D.S., Hwang, C.S., Baniecki, J.D., Shioga, T., Kurihara, K., Kamehara, N., & Ishii, M. 2005. Dielectric Constant Dispersion of Yttrium-doped (Ba,Sr)TiO3 Films in the High-frequency(10KHz-67GHz) Domain. Appl. Phys. Lett., 87(23), 232903.
    17. Jing, Z., Ang, C., Yu, Z., Vilarinho, P.M., & Baptista, J.L. 1998. Dielectric Properties of Ba(Ti1-yYy)O3 Ceramics. J. Appl. Phys., 84(No. 2), 983-986.
    18. Jing, Z., Ang, C., Yu, Z., Vilarinho, P.M., & Baptista, J.L. 1999. Incorporation of Yttrium in Barium Titanate Ceramics. J. Am. Ceram. Soc., 82(5), 1345-1348.
    19. Kim, J.H., Yoon, S.H., & Han, Y.H. 2007. Effects of Y2O3 Addition on Electrical Conductivity and Dielectric Properties of Ba-excess BaTiO3. J. Eur. Ceram. Soc., 27, 1113-1116.
    20. Makovec, D., Samardzija, Z., & Drofenik, M. 2004. Solid Soluboloty of Holmium, Yttrium, and Dysprosium in BaTiO3. J. Am. Ceram. Soc., 87(7), 1324-1329.
    21. Shan, D., Qu, Y.F., & Song, J.J. 2007. Dielectric Properties and Substitution Preference of Yttrium Doped Barium Zirconium Titanate Ceramics. Solid State Communicate, 141, 65-68.
    22. V'yunov, O.I., Kovalenko, L.L., Belous, A.G., & Belyakov, V.N. 2005. Oxidation of Reduced Y-Doped Semiconducting Barium Titanate Ceramics. Inorg. Mater., 41(No. 1), 87-93.
    23. Wang, R.-V., Mclntyre, P.C., Baniecki, J.D., Nomura, K., Shioga, T., Kurihara, K., & Ishii, M. 2005. Effect of Y Doping and Composition-Dependent Elastic Strain on the Electrical Properties of (Ba,Sr)TiO3 Thin Films Deposited at 520?C. Appl. Phys. Lett., 87(19), 192906.
    24. Hansen, P., Hennings, D., & Schreinemacher, H. 1998. Dielectric Properties of Acceptor-Doped (Ba,Ca)(Ti,Zr)O3 Ceramics. J. Electroceram. 2:2, 85-94.
    25. Yang, C.C., Chen, M.S., Hong, T.J., Wu, C.M., Wu, J.M., & Wu, T.B. 1995. Preparation of (100)-Oriented Metallic LaNiO3 Thin Films on Si Substrate by RF Magnetron Sputtering for the Growth of Textured PZT. Appl. Phys. Lett., 66, 2643.
    26. 賴昇志. 1999. 以LaNiO3下電極,開發PZT鐵電記憶體低溫製程之研究. 國立清華大學,碩士論文.
    27. Pozar, D.M. 2005. Microwave Engineering 3rd. John Wiley & Sons.
    28. Gevorgian, S., Vorobiev, A., Kuylenstierna, D., Deleniv, A., Abadei, S., Eriksson, A., & Rundqvist, P. 2004. Silicon Substrate Integrated Ferroelectric Microwave Components. Int. Ferroelectr., 66, 125-138.
    29. 英之, 根., & 古都美, 植. 2004. 無限通訊技術與RFID. 全華科技圖書股份有限公司.
    30. Ma, Z., Becker, A.J., Polakos, P., Huggins, H., Pastalan, J., Wu, H., Watts, K., Wong, Y.H., & Mankiewich, P. 1998. RF Measurement Technique for Characterizing Thin Dielectric Films. IEEE Transactions on electron Devices, 45(NO. 8), 1811-1816.
    31. Dube, D.C., Baborowski, J., Muralt, P., & Setter, N. 1999. The Effect of Bottom Electrode on the Performance of Thin Film Based Capacitors in the Gigahertz Region. Appl. Phys. Lett., 74(No. 23), 3546-3548.
    32. Kim, T.-G., Oh, J., Kim, Y., Moon, T., Hong, K.S., & Park, B. 2003. Crystallinity Dependence of Microwave Dielectric Properties in (Ba,Sr)TiO3 Thin Films. Jpn. J. Appl. Phys., 42(Part 1, No 3), 1315-1319.
    33. Kim, T.-G., Oh, J., Moon, T., Kim, Y., Park, B., Lee, Y.-T., & Nam, S. 2003. Effect of Crystallinity on the Dielectric Loss of Sputter-Deposited (Ba,Sr)TiO3 Thin Films in the Microwave Range. J. Mater. Res., 18(No. 3), 682-686.
    34. Moon, T., Lee, B., Kim, T.-G., Oh, J., Noh, Y.W., Nm, S., & Park, B. 2005. Microwave Dielectric Relaxation of the Polycrystalline (Ba,Sr)TiO3 Thin Film. Appl. Phys. Lett., 86(182904).
    35. Kim, Y., Oh, J., Kim, T.-G., & Park, B. 2001. Effect of Microstructure on the Microwave Dielectric Porperties of ZrTiO4 Thin Films. Appl. Phys. Lett., 78(No. 16), 2363-2365.
    36. Lee, B., Moon, T., Kim, T.-G., Choi, D.-K., & Park, B. 2005. Dielectric Relaxation of Atomic-Layer-Deposited HfO2 Thin Film From 1 kHz to 5 GHz. Appl. Phys. Lett., 87(012901).
    37. Jang, B.-Y., Jeong, Y.-H., Lee, S.-J., Nahm, S., Sun, H.-J., Lee, W.-S., Yoo, M.-J., Kang, N.-K., & Lee, H.-J. 2006. Microwave Dielectric Properties of the BaTi5O11 Thin Film Grown on the Poly-Si Substrate Using RF Magnetron Sputtering. J. Eur. Ceram. Soc., 26, 2151-2154.
    38. Moon, S.E., Kim, E.-K., Lee, S.-J., Kwak, M.-H., Kim, Y.-T., Ryu, H.-C., Kim, W.-J., & Song, T.-K. 2004. Measurement of Microwave Dielectric Properties of Pb(Zr1-xTix) Thin Films. J. Electroceram., 13, 257-260.
    39. Wu, L.-J., Wu, J.-M., Huang, H.-E., & Bor, H.-Y. 2007. Electric Tunable behavior of Sputtered Lead Barium Zirconate Thin Films. Appl. Phys. Lett., 90(072901).
    40. Lee, S.-J., Jang, B.-Y., Jung, Y.-H., Nahm, S., Lee, H.-J., & Kim, Y.-S. 2006. Microwave Dielectric Properties of BaTi4O9 Thin Film. J. Eur. Ceram. Soc., 26, 2165-2168.
    41. 張忠樸. 1997. 實驗計劃速學活用法 修訂三版. 電路板資訊雜誌社.
    42. 吳朗. 1994. 電子陶瓷-介電. 全欣資訊.
    43. Jaffe, B., Cook, W.R., Jr, & Jaffe, H. 1997. Piezoelectric Ceramics. Academic Press Limited.
    44. Kwestroo, W., & Paping, H.A.M. 1958. The Systems BaO-SrO-TiO2,BaOCaO-TiO2, and SrO-CaO-TiO2. J. Am. Ceram. Soc., 42(No. 6), 292-299.
    45. 林奐汝. 2005. 底電極對鋯鈦酸鋇薄膜應用於微波變容器之影響研究. 國立清華大學,碩士論文.
    46. Tamura, H. 2006. Microwave Dielectric Losses Caused by Lattice Defects. J. Eur. Ceram. Soc., 26, 1775-1780.
    47. 王參群. 2006. 磁控濺鍍BZT/(Ta2O5)1-x(TiO2)x 薄膜為MFIS微波變容器之高頻與微波頻段特性研究. 國立清華大學,碩士論文.
    48. Gevorgian, S.S., & Kollberg, E. 2001. Do We Really Need Ferroelectrics in Paraelectric Phase Only in Electrically Controlled Microwave Devices? IEEE Transactions on Microwave Theory and Techniques, 49(No. 11), 2117-2124.
    49. Miao, J., Yuan, J., Wu, H., Yang, S.B., Xu, B., Cao, L.X., & Zhao, B.R. 2007. Crystal Orientation dependence of the Dielectric Properties for Epitaxial BaZr0.15Ti0.85O3 Thin Film. Appl. Phys. Lett., 90, 022903.
    50. 藍文安. 2006. 鋯鈦酸鋇鐵電薄膜調諧變容器之研究. 國立清華大學,博士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE