研究生: |
陳俊廷 Chen, Jyun-Ting |
---|---|
論文名稱: |
介電質襯裡波導電子加速結構之設計研究 Design of a Dielectric-lined Waveguide Structure for High Energy Electron Acceleration |
指導教授: |
劉偉強
Lau, Wai-Keung 張存續 Chang, Tsun-Hsu |
口試委員: |
李安平
Li, An-Ping 趙賢文 Chao, Hsein-Wen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 介電質襯裡波導 、真空紫外光自由電子雷射 、縱向單極電場 、分析函數 |
外文關鍵詞: | dielectric-lined waveguide, VUV FEL, longitudinal monopole electric field, analytic function |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是探討利用電子束在圓柱狀介電質襯裡波導(Dielectric-lined Waveguide;DLW)中所產生之縱向單極尾場加速電子束的可能性。首先,我們回顧了在圓柱狀DLW結構中的尾場理論。然後運用此理論所得的電磁場計算公式進行加速結構參數設計。我們考慮現時國際間先進光陰極注射器(Photoinjector)所能夠達到的電子束流參數,評估在我們所設計的DLW結構中是否能夠產生100 MV/m以上的加速電場,希望能夠提供國家同步輻射研究中心進行相關研究一些重要參考數據。經過一系列的計算分析,我們得出波導結構的尺寸和介電質常數與加速場強之關係後發現,在介電質襯裡內徑為0.1公分、外徑為0.5公分的情況下,一團5 nC的電子束通過時所產生的尾場加速梯度可達140 MV/m 以上。
This study focuses on the investigation of the feasibility of using a high brightness electron beam to excite a longitudinal monopole wake field generated in a Dielectric-lined Waveguide (DLW) for electron acceleration. First, we review the theory of wake field excitation in a cylindrical DLW structure. And then using the analytical formulas obtained from this theory to determine the structural parameters required to achieve high gradient acceleration. We consider beam current parameters that can be achieved by advanced photoinjectors and evaluate the possibility to design a cylindrical DLW structure that is able to provide an accelerating field of 100 MV/m or more. After a series of calculations and analysis, we obtained parametric dependence accelerating field gradients between geometric sizes and dielectric constant of the DLW structure. It was found that a DLW structure with an inner diameter of 0.1 cm, an outer diameter of 0.5 cm and a relative dielectric constant of 5, an accelerating wake field gradient larger than 140 MV/m can be generated by passing a 5 nC relativistic electron beam through this structure.
[1] A.L. Healy, G. Burt, and S. P. Jamison, Nuclear Inst. and Methods in Physics Research, A 909, 199~203 (2018).
[2] Liling Xiao, Wei Gai, and Xiang Sun, Physical Review E, Volume 65, 016505 (2001)
[3] A. Tremaine, J. Rosenzweig, and P. Schoessow, Phys. Rev. E 56, 7204 (1997).
[4] Y. Nie, G. Xia, and T. Pacey, Nuclear Inst. and Methods in Physics Research, A 909, 271~275 (2018).
[5] T. H. Pacey, G. Xia, Y. Saveliev, and D. J. Dunning, WEPVA021, in Proc. IPAC2017, Copenhagen, Denmark.
[6] R. Wallis, et al., Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides, Opt. Express 23, 26276~26287 (2015)
[7] F. Lemery, et al., Physical Review Letters 122, 044801 (2019).
[8] J. G. Power, et al., FRPMN117, in Proc. of PAC07, Albuquerque, New Mexico, USA.
[9] J.V. Jelley, et al., Br. J. Appl. Phys. 6 227 (1955)
[10] K.-Y. Ng, Phys. Rev. D 42, 1819 (1990).
[11] S. Y. Park and J. L. Hirshfield, Physical Review, E 62, 1266~1283 (2000).
[12] P. Craievich, Physical Review Special Topics- Accelerators and Beams 13, 034401 (2010).
[13] J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975)
[14] W. K. H. Panofsky and W. A. Wenzel, Rev. Sci. Instrum. 27, 967 (1956)
[15] R. E. Collin, Field Theory of Guided Waves, 2nd ed (Oxford University Press, New York, 1991).