簡易檢索 / 詳目顯示

研究生: 玲 玲
Nurjanati, Bayti
論文名稱: 模態展開法和 the Ikeda Map 法導出的 频率梳子Lugiato-Lefever 方程式(LLE) 的研究
Study of Comb Generation by The Lugiato-Lefever Equations (LLE) Derived from the Modal Expansion Method and the Ikeda Map Method
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 王培勳
Wang, Pei-Hsun
陳國平
Chen, Kuo-Ping
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 82
中文關鍵詞: 出的 频率梳子Lugiato-Lefever 方程式Ikeda Map法模態展開法
外文關鍵詞: Comb generation, Lugiato-Lefever equation, Ikeda Map method, Modal expansion method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代化的時代,科學家積極推動各領域的現代化,其中之一就是晶片技術。梳狀波生成是其中一個關鍵技術,特別是在電信領域。本研究將探討兩種生成梳狀波的方法,分別是 Ikeda map和 modal expansion method。根據案例研究,Ikeda map 和 modal expansion method 都可以使用幾乎相同的參數來生成梳狀波。我們用來比較的參數包括功率、失諧量及耦合條件。當功率低於門檻值時,無論是在臨界耦合還是過耦合的情況下,都無法生成梳狀波。因此,我們可以透過調整 Ikeda map 和 modal expansion method 中的參數來達到孤子態,而這種狀態高度依賴於失諧量參數。


    In this modern era, scientists try to modernize everything, one of them is in the chip technology. A comb generation is one of the fundamental aspects, especially in telecommunications. This research will describe the study of two methods to generate combs. These two methods are the Ikeda Map and the modal expansion method.
    Based on the case study, the Ikeda Map and the modal expansion method can generate a comb using almost the same parameters. The parameters we use here to compare are power, detuning, and coupling conditions. When the power is below the threshold, generating the comb using critical coupling or over-coupling conditions is not enough.
    Therefore, we can also find the soliton state with the correct parameters in the Ikeda and Modal expansion methods. This state depends on the detuning parameters.

    Chapter 1: Introduction 1 1.1 Optical Frequency Combs 1 1.2 How to Generate Comb Using The Ikeda Map and the Modal Expansion Method 2 1.3 How to Analyze Comb 5 1.4 Application of Kerr Optical Frequency Combs (KOFCs) 7 1.5 Thesis Outline 8 Chapter 2: Lugiato-Lefever Equation Derived From Ikeda Map Method 10 2.1 Pulse Propagation 10 2.2 How to Find Lugiato-Lefeveer Equation from Ikeda Map Method 18 Chapter 3: Lugiato-Lefever Equation From Modal Expansion Method 24 3.1 How to Find Modal Field Dynamics 24 3.2 How to Find Lugiato-Lefever Equation (LLE) using Modal Expansion Method 28 Chapter 4: Analytical Methods and Threshold Systems 33 4.1 Bistability for Pulse Propagation LLE 33 4.2 Modulation Instability for Pulse Propagation LLE 34 4.3 Threshold for LLE from Modal Expansion Method 35 Chapter 5: Numerical Methods 40 5.1 Operator splitting 40 5.2 Split-step Fourier Method (SSFM) 41 Chapter 6: Case Study 43 6.1 No detuning and critical coupling condition 43 6.2 With Detuning and Critical Coupling Condition 49 6.3 No Detuning and Over Coupling Condition 54 6.4 With detuning and over-coupling condition 60 6.5 Additional state 66 Chapter 7: Conclusion 75 References 76 Appendix A 77 Appendix B 80

    [1] T. KATO, "Nonlinear optical processes with a silica toroid microcavity for optical frequency comb generation," Keio University, 2017.
    [2] A. L. Gaeta, M. Lipson, and T. J. Kippenberg, "Photonic-chip-based frequency combs," nature photonics, vol. 13, no. 3, pp. 158-169, 2019.
    [3] M. Ekström, "Modeling of optical microresonator frequency combs," ed, 2022.
    [4] Y. K. Chembo and C. R. Menyuk, "Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators," Physical Review A—Atomic, Molecular, and Optical Physics, vol. 87, no. 5, p. 053852, 2013.
    [5] B. E. Saleh and M. C. Teich, Fundamentals of photonics. john Wiley & sons, 2007.
    [6] L. Lugiato, F. Prati, and M. Brambilla, Nonlinear optical systems. Cambridge University Press, 2015.
    [7] Y. K. Chembo and N. Yu, "Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators," Physical Review A—Atomic, Molecular, and Optical Physics, vol. 82, no. 3, p. 033801, 2010.
    [8] Y. K. Chembo, D. V. Strekalov, and N. Yu, "Spectrum and Dynamics of Optical Frequency Combs Generated with Monolithic Whispering Gallery Mode Resonators," Physical review letters, vol. 104, no. 10, p. 103902, 2010.
    [9] Y. K. Chembo, "Kerr optical frequency combs: theory, applications and perspectives," Nanophotonics, vol. 5, no. 2, pp. 214-230, 2016.
    [10] G. P. Agrawal, Nonlinear Fiber Optics Fifth Edition. 2013.
    [11] R. W. Boyd, Nonlinear optics (Springer Handbook of Atomic, Molecular, and Optical Physics). Springer, 2007.
    [12] C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, "Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes," Physical Review A, vol. 89, no. 6, p. 063814, 2014.
    [13] Y. K. Chembo, "Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light," Physical Review A, vol. 93, no. 3, p. 033820, 2016.

    QR CODE