研究生: |
林芝瑄 Lin, Chih-Hsuan |
---|---|
論文名稱: |
立體規則嵌段共聚物──聚丙烯-聚苯乙烯之雙連續奈米結構之有序-有序相轉化研究 Order-Order Transition of the Ordered Bicontinuous Nanostructures in Isotactic Polypropylene-block-Polystyrene Stereoregular Block Copolymer |
指導教授: |
陳信龍
Chen, Hsin-Lung |
口試委員: |
朱哲毅
劉建良 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 有序-有序轉化 、雙連續奈米結構 、小角度光散射 、嵌段共聚物 |
外文關鍵詞: | OBDD, OBDG |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用小角度X光散射實驗研究聚丙烯-聚苯乙烯 (isotactic polypropylene-block- polystyrene, iPP-b-PS) 所形成的雙連續奈米結構,分別為ordered bicontinuous double diamond (OBDD) 結構及ordered bicontinuous double gyroid (OBDG) 結構。我們由小角度X光散射圖譜可得知此嵌段共聚物在升溫過程中會形成OBDG結構,當繼續升溫至有序-無序轉化溫度 (order-disorder temperature) 時則轉變為無序結構;而在初步降溫過程中會漸漸發展出無序結構與OBDG結構的共存相,最終,OBDG結構經由有序-有序轉化 (order-order transition, OOT) 轉變為OBDD結構。
此實驗結果顯示低溫狀態時OBDD較OBDG結構穩定,為比較兩結構的熱力學穩定性,我們分別探討界面自由能(interfacial free energy) 及iPP與PS兩鏈段之packing frustration熵的損失。在界面自由能方面,雙曲面分布的OBDD結構擁有較高的比表面積 (specific surface area, S/V);而iPP與PS兩鏈段的packing frustration則是互相競爭的關係,若假設兩結構轉換過程中體積守恆,且結構的幾何形狀為圓柱而非雙曲面分布,我們可得知每單位體積的OBDD結構擁有較小的iPP鏈段packing frustration,但會增加PS鏈段的packing frustration;反之,OBDG結構則擁有較低的PS鏈段packing frustration。
綜合實驗結果及熱力學計算,我們推論在高溫狀態中,減緩PS鏈段的packing frustration為主導因素,進而使OBDG成為穩定結構;而在低溫狀態下則是由iPP鏈段的packing frustration主導,造成OBDD成為低溫時的穩定結構。
We have investigated the formation of ordered bicontinuous nanostructures in a diblock copolymer composed of a stereoregular block, isotactic polypropylene-block- polystyrene (iPP-b-PS). The ordered bicontinuous double diamond (OBDD) and ordered bicontinuous double gyroid (OBDG) nanostructures in iPP-b-PS were revealed by temperature-dependent small angle x-ray scattering (SAXS) experiments. The OBDG structure developed at the temperature above the melting point of iPP block upon heating from the as-cast state. The OBDG structure transformed into disordered state as further heating to the order-disorder transition (ODT) temperature. The subsequent cooling from the disordered state resulted in the formation of OBDG phase which coexisted with the disordered phase. Further cooling induced the development of the OBDD structure. Eventually, OBDD became the dominant structure, indicating that there was an order-order transition (OOT) from OBDG to OBDD and the OBDD was more stable at the lower temperature. We further discussed the thermodynamic stabilities of OBDG and OBDD by comparing the interfacial free energy and packing frustration of iPP and PS blocks in these two phases. The OBDG constructed by the tripods of iPP prescribed lower packing frustration for the PS block, while the OBDD constructed by the tetrapod iPP domains offered smaller packing frustration for the iPP block chains. In the case of the interfacial free energy, OBDD was found to exhibit a slightly higher specific interface (S/V) than OBDG if the iPP domains exhibit hyperbolic surface. However, as the iPP domains approach cylinder in geometry, (i.e., the domain with constant mean curvature) OBDG displays a slightly higher (S/V). Therefore, we proposed that the stabilities of OBDG and OBDD were governed by the packing frustration of PS and iPP blocks constituting the matrix phase and microdomains, respectively. At high temperature, the release of packing frustration of PS block dominated, such that OBDG was more stable. On the other hand, the relief of iPP packing frustration became increasingly important with decreasing temperature, and when the temperature was sufficiently low, this thermodynamic driving force dominated, such that OBDD became the stable structure. The relief of the packing frustration of iPP block was probably relevant to its strong tendency to form helical segments at lower temperature.
1. Hanley, I. W., Developments in Block Copolymer Science and Technology. John Wiley & Sons, Ltd.: 2004.
2. Kirkensgaard, J. J. K., Kaleidoscopic tilings, networks and hierarchical structures in blends of 3-miktoarm star terpolymers. Interface Focus 2012, 2, 602-607.
3. Frank S. Bates, F., G. H., Block Copolymers -Designer Soft Materials. Physics Today 1999, 52, 32.
4. Helfand, E., Theory of inhomogeneous polymers: Fundamentals of the Gaussian random‐walk model. J.Chem. Phys. 1975, 62, 999-1005.
5. Helfand, E., Block Copolymer Theory. III. Statistical Mechanics of the Microdomain Structure. Macromolecules 1975, 8 (4), 552-556.
6. Eugene Helfand, Z. R. W., Block Copolymer Theory. 4. Narrow Interphase Approximation. Macromolecules 1976, 9 (6), 879-888.
7. Eugene Helfand, Z. R. W., Block Copolymer Theory. 5. Spherical Domains. Macromolecules 1978, 11 (5), 960-966.
8. Eugene Helfand, Z. W., Block Copolymer Theory. 6. Cylindrical Domains. Macromolecules 1980, 13 (4), 994-998.
9. Leibler, L., Theory of Microphase Separation in Block Copolymers. Macromolecules 1980, 13 (6), 1602-1617.
10. Bates, M. W. M. a. F. S., Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29 (23), 7641-7644.
11. Bates, M. W. M. a. F. S., M. W. Matsen * and F. S. Bates. Unifying Weak- and Strong-Segregation Block Copolymer Theories 1996, 29 (4), 1091-1098.
12. Schick, M. W. M. a. M., Stable and Unstable Phases of a Diblock Copolymer Melt. Physical Review Letters 1994, 72 (16), 2660-2663.
13. Damian A. Hajduk, P. E. H., Sol M. Gruner, Christian C. Honeker, Gia Kim, Edwin L. Thomas, Lewis J. Fetters, The Gyroid: A New Equilibrium Morphology in Weakly Segregated Diblock Copolymers. Macromolecules 1994, 27 (15), 4063-4075.
14. J. M. Seddon, J. L. H., N. A. Warrender and E. Pebay-Peyroula, Structural studies of phospholipid cubic phases Progr. Colloid Polym. Sci. 1990, 81, 189-197.
15. Mortensen, K. A. a. K., Order, Disorder, and Composition Fluctuation Effects in Low Molar Mass Hydrocarbon−Poly(dimethylsiloxane) Diblock Copolymers. Macromolecules 1996, 29 (18), 5940-5947.
16. Floudas, I. A. a. G., Junction Point Fluctuations in Microphase Separated Polystyrene−Polyisoprene−Polystyrene Triblock Copolymer Melts. A Dielectric and Rheological Investigation. Macromolecules 1997, 30 (17), 5004-5011.
17. Damian A. Hajduk, P. E. H., Sol M. Gruner, Christian C. Honeker, Edwin L. Thomas, Lewis J. Fetters, A Reevaluation of Bicontinuous Cubic Phases in Starblock Copolymers. Macromolecules 1995, 28 (7), 2570-2573.
18. Hadjichristidis, Y. T. a. N., Architecturally-Induced Tricontinuous Cubic Morphology in Compositionally Symmetric Miktoarm Starblock Copolymers. Macromolecules 1996, 29 (10), 3390-3396.
19. Jun-Ting Xu , S. C. T., J. Patrick A. Fairclough , Shao-Min Mai , and Anthony J. Ryan, Morphological Confinement on Crystallization in Blends of Poly(oxyethylene-block-oxybutylene) and Poly(oxybutylene). Macromolecules 2002, 35 (9), 3614-3621.
20. Thomas H. Epps , I., Joon Chatterjee , and Frank S. Bates, Phase Transformations Involving Network Phases in ISO Triblock Copolymer−Homopolymer Blends. Macromolecules 2005, 38 (21), 8775-8784.
21. Alexey E. Likhtman, A. N. S., Stability of the OBDD Structure for Diblock Copolymer Melts in the Strong Segregation Limit. Macromolecules 1994, 27 (11), 3103-3106.
22. EDWIN L. THOMAS, D. M. A., CHRIS S. HENKEE & DAVID HOFFMAN, Periodic area-minimizing surfaces in block copolymers. Nature 1988, 334 (6138), 598-601.
23. M. W. Matsen, M. S., Stable and Unstable Phases of a Linear Multiblock Copolymer Melt. Macromolecules 1994, 27 (24), 7157-7163.
24. Bates, M. F. S. a. F. S., Epitaxial Relationship for Hexagonal-to-Cubic Phase Transition in a Block Copolymer Mixture. Physical Review Letters 1994, 73 (1), 86-89.
25. M. W. Matsen, M. S., Cylinder and Gyroid Epitaxial Transitions in Complex Polymeric Liquids. Physical Review Letters 1998, 80 (20), 4470-4473.
26. Lei Zhu, P. H., William Y. Chen, Xin Weng, Stephen Z. D. Cheng, Qing Ge, Roderic P. Quirk, Tony Senador, Montgomery T. Shaw, Edwin L. Thomas, Bernard Lotz, Benjamin S. Hsiao, Fengji Yeh, and Lizhi Liu, Plastic Deformation” Mechanism and Phase Transformation in a Shear-Induced Metastable Hexagonally Perforated Layer Phase of a Polystyrene-b-poly(ethylene oxide) Diblock Copolyme. Macromolecules 2003, 36, 3180-3188.
27. M. E. Vigild, K. A., and K. Mortensen, Transformations to and from the Gyroid Phase in a Diblock Copolymer. Macromolecules 1998, 31, 5702-5716.
28. Insun Park, B. L., Jinsook Ryu, Kyuhyun Im, Jinhwan Yoon, Moonhor Ree, and Taihyun Chang, Epitaxial Phase Transition of Polystyrene-b-Polyisoprene from Hexagonally Perforated Layer to Gyroid Phase in Thin Film. Macromolecules 2005, 38, 10532-10536.
29. Honda, T., Epitaxial Transition from Gyroid to Cylinder in a Diblock Copolymer Melt. Macromolecules 2006, 39 (2340-2349).
30. Dung Q. Ly, T. H., Toshihiro Kawakatsu, and Andrei V. Zvelindovsky, Kinetic Pathway of Gyroid-to-Cylinder Transition in Diblock Copolymer Melt under an Electric Field. Macromolecules 2007, 2007, 2928-2935.
31. Zvelindovsky, M. P. a. A. V., Kinetic pathways of gyroid-to-cylinder transitions in diblock copolymers under external fields: cell dynamics simulation. Soft Matter 2008, 4, 316-327.
32. Kristin Schmidt, C. W. P., Heiko G. Schoberth, Heiko Zettl, Kerstin A. Schindler, and Alexander B€oker, Electric Field Induced Gyroid-to-Cylinder Transitions in Concentrated Diblock Copolymer Solutions. Macromolecules 2010, 43, 4268-4267.
33. Jueun Jung, J. L., Hae-Woong Park, Taihyun Chang,, Hidekazu Sugimori, and Hiroshi Jinnai, Epitaxial Phase Transition between Double Gyroid and Cylinder Phase in Diblock Copolymer Thin Film. Macromolecules 2014, 47, 8761-8767.
34. Che-Yi Chu, W.-F. L., Jing-Cherng Tsai, Chia-Sheng Lai, Shen-Chuan Lo, Hsin-Lung Chen, Order-Order transition between Equilibrium Ordered Bicontinuous Nanostructure of Double Diamond and Double Gyroid in Stereoregular Block Copolymer. Macromolecules 2012, 45 (5), 2471-2477.
35. C. Y. Chu, X. J., H. Jinnai, R.Y. Pei, W. F. Lin, J. C. Tsai and H. L. Chen, Real-space evidence of the equilibrium ordered bicontinuous double diamond structure of a diblock copolymer. Soft Matter 2015, 11 (10), 1871-1876.
36. Karen I. Winey, E. L. T., Lewis J. Fetters, The ordered bicontinuous double-diamond morphology in diblock copolymer/homopolymer blends. Macromolecules 1992, 25 (1), 422-428.
37. O'Brien, A. D. B. a. D. F., Bicontinuous Cubic Morphologies in Block Copolymers and Amphiphile/Water Systems: Mathematical Description through the Minimal Surfaces. Macromolecules 1997, 30 (11), 3395-3402.
38. G. Natta, I. P., A. Zambelli, Stereospecific Catalysts for the Head-To-Tail Polymerization of Propylene to a Crystalline Syndiotactic Polymer. J. Am. Chem. Soc. 1962, 84 (8), 1488-1490.
39. Thomas C. Clancy, M. P., Jeffrey D. Weinhold, John G. Curro, and Wayne L. Mattice Mixing of Isotactic and Syndiotactic Polypropylenes in the Melt. Macromolecules 2000, 33 (25), 9452-9463.
40. L. Zhu, S. Z. D. C., B.H. Calhoun, Q. Ge, R.P. Quirk, E.L. Thomas, B.S. Hsiao, F. Yeh, B. Lotz, Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer. Polymer 2001, 42 (13), 5829-5839.
41. Lewis J. Fetters, D. J. L., William W. Graessley, Chain dimensions and entanglement spacings in dense macromolecular systems. Journal of Polymer Science Part B: Polymer Physics 1999, 37 (10), 1023-1033.
42. Shenoy, G. S. A. a. S. R., Observability of hysteresis in first-order equilibrium and nonequilibrium phase transitions Physical Review A 1981, 23, 2719-2723.
43. Xinyuan Zhu, D. Y., Hongxi Yao, Pingfang Zhu, In situ FTIR spectroscopic study of the regularity bands and partial-order melts of isotactic poly(propylene). Macromol. Rapid Common 2000, 21 (7), 354-357.
44. Ming-Champ Lin, H.-L. C., Wen-Fu Lin, Pei-Sun Huang, and Jing-Cherng Tsai, Crystallization of Isotactic Polypropylene under the Spatial Confinement Templated by Block Copolymer Microdomains. J. Phys. Chem. B 2012, 116, 12357-12371.