簡易檢索 / 詳目顯示

研究生: 蔡志宏
Tsai, Chih-Hung
論文名稱: 預測補貨策略對供應商成本之影響評估
Evaluating the impact of the forecasting and replenishing strategies on the cost of suppliers
指導教授: 林則孟
Lin, James T.
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 128
中文關鍵詞: 供應商管理存貨預測方法補貨策略目標庫存
外文關鍵詞: Vendor Managed Inventory, Forecasting methods, Replenising strategies, Target stocks
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討在供應商管理存貨的二階存貨系統中,評估在工廠供給限制下的混合預測補貨策略對供應商成本之影響,以期望在快速供貨環境下,能持續降低供應商於HUB倉發生的存缺貨成本。所考量的範圍介於供應商工廠、中間HUB倉庫與客戶產生需求預測之間,涉及需求型態與變異、預測方法、補貨策略、工廠存貨配置決策與工廠供給限制。利用模擬方法來建構模式,並擷取各決策組合下對供應商HUB倉成本的量測績效,再使用多因子實驗設計手法,企圖尋找低成本效益的一般性建議結論。由實驗結果得知,預測方法與補貨策略確實存在顯著性交互作用關係,建議供應商先評估客戶提供的預測與歷史需求間的預測偏差,再依據屬於不同預測偏差特性參考量表配合對應的補貨策略,將能達到較低的成本效益。相對的,在工廠供給端,當工廠成品存貨有限而無法滿足多方需求時,對於有限存貨配置不可偏廢一方,應設法使得所有下游HUB倉庫皆能被部份滿足,例如採用平均分配存貨的配置法則,來克服有限存貨分配問題對成本的衝擊。另一方面,在工廠端的供給設置量應盡可能相依實際客戶需求水準作配置,同時可降低補貨策略造成長鞭效應需求放大的現象,過多或過少的工廠供給配置量皆會造成供應商成本的增加。因此,本研究分別對供應商管理存貨的需求端與供給端,提供供應商在預測補貨、工廠供給限制、存貨配置決策上的參數與決策組合建議,以協助供應商持續降低成本。


    The present study discusses the two-stage inventory system within Vendor Managed Inventory and evaluates the effect of hybrid forecasting and replenising strategies towards the supplier’s cost under the plant supply constraint. It is anticipated that the supplier’s cost of stock and outstock at HUB warehouse can be gradually decreased within the fast supply environment. Our concerns fall amongst the supplier’s plant, middle HUB warehouse, and the forecast of the customer’s demand, involving the areas of demand pattern and variation, forecasting method, replenishing strategy, inventory allocation decision, and plant supply constraint. By adopting simulation methodology, we establish a model. Moreover, we attempt to seek a general suggestive conclusion by selecting the best performance for the supplier’s HUB warehouse cost from various strategy combinations along with the multi-factor experimental design. Based on the results, there is indeed a significant difference between the forecasting method and the replenishing strategies. It is advised that the supplier firstly evaluate the forecasting bias between the forecast and demand-supply history offered by customers before adopting the corresponding replenishing strategy. By doing so, it is hoped to benefit the lower- cost circumstance. On one hand, when a plant has limited goods in stock that cannot meet multiple demands, it should strike a balance regarding the constrained stock allocation. The plant is supposed to meet the partial demand of all the downstream HUB warehouses. For instance, by applying the rule of equal stock allocation can overcome the negative impact resulted from the finite stock allocation to the cost. On the other end, the amount of stock allocated in plant should be in harmony with the customer’s demand, which can diminish the Bullwhip Effect caused by the replenishing strategy. Moreover, the allocated amount in plant, whether over or below the standard, would affect the increase of the supplier’s cost. Therefore, the present study offers suggestions about parameters and decisions combination in terms of replenishing strategy, stock from plant supply constraint, and inventory allocation decision for the supplier’s supply and forecasting for customer’s demand end, with a purpose to lower
    the cost gradually.

    圖目錄 vi 表目錄 vi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 研究步驟 4 第二章 文獻回顧 6 2.1 企業供需與結構關係 6 2.2 補貨策略類別與評量 10 2.2.1 補貨策略類別與演進 10 2.2.2 補貨策略評量 15 2.3 補貨問題考量需求與預測的類別 20 2.4 補貨問題考量工廠供給限制的類別 23 第三章 系統分析與問題定義 25 3.1 系統分析 25 3.2 問題定義 31 3.2.1 問題描述 31 3.2.2 系統設計 32 3.2.3 問題假設 34 3.2.4 符號定義 34 3.3 影響系統績效之因子 37 3.3.1 需求不確定性 38 3.3.2 預測方法與偏差 40 3.3.3 補貨策略 42 3.3.4 存貨配置 52 3.3.5 工廠供給限制 56 第四章 研究方法與步驟 63 4.1 研究方法架構 63 4.1.1 營運程序表格定義 65 4.1.2 離散事件的模擬模式 69 4.1.3 模擬模式建構 75 4.2 模擬績效與量測 77 4.3 實驗設計模型與假設 78 第五章 模擬實驗與分析 80 5.1 實驗設計與結果分析 80 5.1.1 實驗一:需求來自於預測方法 80 5.1.2 實驗二:需求來自於預測偏差 89 5.1.3 實驗三:一對多的存貨分配問題 102 5.2 小結 108 第六章 結論與建議 110 6.1 結論 110 6.2 建議 112 參考文獻 113 附錄一 補貨策略對於需求誤差的放大性質 119 附錄二 再訂購點模式(ROP)下的補貨量決定 121 附錄三 調整安全庫存係數與績效分開 123 附錄四 各需求型態下展開細緻因子水準的結果 125 附錄五 各需求型態下的ANOVA三因子檢定表格 127

    1. 張怡筠,「CPFR中滾動式預測的關鍵因子探討」,國立清華大學資訊系統與應用所碩士論文,2006。
    2. 陳昭廷,「CPFR協同預測中之承諾機制的影響因子分析」,國立清華大學工業工程管理學所碩士論文,2007。
    3. 謝依潔,「供應鏈滾動預測與訂單策略之模擬研究」,國立中央大學資訊管理學系碩士論文,2007。
    4. 李建勳,「供應商管理庫存下之預測補貨策略」,國立清華大學工業工程管理學所碩士論文,2008。
    5. Alexander, E. E., J. C. Taylor and P. J. Daugherty. “Automatic replenishment programs and level of involvement: performance implications”, International Journal of Logistics Management, 10(1), pp.25-36, 1999
    6. Axsäter, S. and Rosling, K., “Multi-level production-inventory control: Material requirements planning or reorder point policies”, European Journal Operational Research, 75, pp.405-412, 1994
    7. Babaï, M. X., A. A. Syntetos, Y. Dallery and K. Nikolopoulos, “Dynamic re-order point inventory control with lead-time uncertainty: analysis and empirical investigation”, International Journal of Production Research, 47(9), pp.2461-2483, 2009
    8. Bradley, J. R. and Arntzen, B. C., “The simultaneous planning of production, capacity, and inventory in seasonal demand environments”, Operations Research, 47(6), pp. 795-806, 1999
    9. Bregman, R. L., “An analytical framework for comparing material requirements planning to reorder point systems”, European Journal Operational Research, 75, pp.74-88, 1994
    10. Chakravorty, S.S., “A simulation study of the performance of a multi-echelon production distribution system with feedback and feedforward controls”, Unpublished doctoral dissertation, University of Georgia, Georgia, 1992
    11. Chen, F., Z. Drezner, J. K. Ryan, D. Simchi-Levi, “Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information” , Management Science, 46(3), pp.436-443, 2000
    12. Croston, J. D., “Forecasting and stock control for intermittent demands”, Operational Research Quarterly, 23(3), pp.289-303, 1972
    13. De Toni, A.F. and Zamolo, E, ” From a traditional replenishment system to vendor-managed inventory: A case study from the household electrical appliances sector”, International Journal of Production Economics, 96(1), pp.63-79, 2005
    14. Eaves, A. H. C. and Kingsman, B. G., “Forecasting for the ordering and stockholding of spare parts”, Journal of the Operational Research Society, 55, pp.431-437, 2004
    15. Ehrhardt, R., ”The power approximation for computing (s, S) inventory policies” , Management Science, 25(8), pp.777-786, 1979
    16. Ehrhardt, R. and Mosier, C., “A revision of the power approximation for computing (s, S) policies”, Management Science, 30,(5), pp.618-622, 1984
    17. Gallego, G. and Özer, Ö., ”Integrating replenishment decisions with advance demand information”, Management Science, 47(10), pp.1344-1360, 2001
    18. Robins, G. “Pushing the limits of VMI”, Stores, 77(3), pp.42-44, 1995
    19. Harris, F. W., ”How Many Parts to Make at Once”, Factory: The Magazine of Management, 10(2), pp.135-136, 1913
    20. Jacobs, F. R and Whybark, D. C., ”A comparison of reorder point and material eequirements planning inventory control logic”, Decision Sciences, 23(2), pp.332-342, 1992
    21. Karimi, B., Fatemi Ghomi, S. M. T. and Wilson, J. M., “The capacitated lot sizing problem: A review of models and algorithms”, International Journal of Mangement Science, 31, pp.365-378, 2003
    22. Kazim, S., “On the benefits of CPFR and VMI: A comparative simulation study”, International Journal of Production Economics, 113, pp.575-586, 2008
    23. Keaton, M., “Inventory control under gamma demand and stochastic lead time” Journal of Business Logistics, 16 (1), pp.107-131, 1995
    24. Keh, H. T. and Seong, Y. P., “To market: The changing face of grocery retailing”, Long Range Planning, 30(6), pp.836-846, 1997
    25. Kuk, G., ” Effectiveness of vendor-managed inventory in the electronics industry: determinants and outcomes”, Information & Management, 41, pp.645-654, 2004
    26. Lau, J. S. K., G. Q. Huang and K. L. Mak, “Impact of information sharing on inventory replenishment in divergent supply chains”, International Journal of Production Research, 42(5), pp.919-941, 2004
    27. Nieboer, R.A.J.J. and Dekker, R., “Brownian motion approximations for tankage assessment and stock control”, European Journal of Operational Research, 85, pp.192-204, 1995
    28. Orlicky, J., “Material Requirements Planning”, New York: McGraw Hill, 1975
    29. Ouyang, L. Y., K. S. Wu and C. H. Ho,” An integrated vendor–buyer inventory model with quality improvement and lead time reduction”, International Journal of Production Economics , 108(1-2), pp.349-358, 2007
    30. Piplani, R. and Viswanathan, S., ”A model for evaluating supplier-owned inventory strategy”, International Journal of Production Economics, 81-82, pp.565-571, 2003
    31. Pohlen, T. L. and Goldsby, T. J., “VMI and SMI programs: How economic value added can help sell the change”, International Journal of Physical Distribution & Logistics Management, 33(7), pp.565-581, 2003
    32. Reid, R.D., “A comparative analysis of inventory planning systems in a multi-echelon, multiproduct distribution system supplied by a limited capacity manufacturer”, Unpublished doctoral dissertation, Ohio State University, Ohio, 1987
    33. Rees, L. P., Huang, P. Y. and Taylor, B. W., “A comparative analysis of an MRP lot-for-lot system and a Kanban system for a multistage production operation”, International Journal of Production Research, 27, pp.1427-1443, 1989
    34. Ritzman, L. P. and Krajewski, L. J., “Comparisons of material requirements planning and reorder point systems”, Simulation Councils Proc. Series, 12, pp.47-54, 1983
    35. Ruud, T. and Laura, D., “Forecasting intermittent demand”, Lancaster University Management School, Working Paper, UK, 2006
    36. Ryan, M., “CRP spells survival”, Progressive Grocer, 73(8), pp.28-34, 1994
    37. Sani, B. and Kingsman, B. G., “Selecting the best periodic inventory control and demand forecasting methods for low demand items”, Journal of the Operational Research Society, 48, pp.700-713, 1997
    38. Sugimori, Y., Kusunoki, K., Cho, F. and Uchikawa S., “Toyota production system and kanban system materialization of just-in-time and respect-for-human system”, International Journal of Production Research, 15(6), pp.553-564, 1977
    39. Silver, E. A. and Meal, H. C., “A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment”, Production & Inventory Management, 14(2), pp.64-74, 1973
    40. Silver, E. A., Pyke, D. F. and Petetson, R., “Inventory Management and Production Planning and Scheduling”, New Tork: Wiley, 1998
    41. Suwanruji, P. and Enns, S.T., “Information and logic requirements for replenishment systems”, International Journal of Operations and Quantitative Management, 8, pp.149-164, 2002
    42. Suwanruji, P. and Enns, S.T., “Comparison of supply chain replenishment strategies in an uncapacitated distribution system”. International Journal of Risk Assess & Manage, forthcoming, 2005
    43. Suwanruji, P. and Enns, S.T., “Evaluating the effects of capacity constraints and demand patterns on supply chain replenishment strategies”, International Journal of Production Research., 44(21), pp.4607-4629, 2006
    44. Takamichi, H. amd Stephen, M. D., “On variance amplification in a three-echelon supply chain with minimum mean square error forecasting”, International Journal of Management Science, 34, pp.344-358, 2006
    45. Teunter, R. H. and Duncan, L., “Forecasting demand for slow moving inventory”, Research Report, Lancaster University Management School, 2006
    46. Tiacci, L. and Saetta, S., ”An approach to evaluate the impact of interaction between demand forecasting method and stock control policy on the inventory system performances”, International Journal of Production Economics, In Press, Corrected Proof, Available online, 2008
    47. Van Norden, L. and Van de Velde, S., ”Multi-product lot-sizing with a transportation capacity reservation contract”, European Journal of Operational Research, 165, pp.127-128, 2005
    48. Wilson, R. H., “A scientific routine for stock control”, Harvard Business Review, 13(1), pp.116-128, 1934
    49. Wagner, H. M. and Whitin, T. M., “Dynamic version of the economic lot size model”, Management Science, 5(1), pp.88-96, 1958
    50. Wallace, J. H. and Mark, L. S., ”Factory Physics”, McGraw: Hill, 2001
    51. Yang, K.K., “A comparison of reorder point and kanban policies for a single machine production system”, Production Planning & Control, 9, pp.385-390, 1998
    52. Zhao, X., Xie, J. and Lau, R. S. M., “Improving the supply chain performance: use of forecasting models versus early order commitments”, International Journal of Production Research, 39(17), pp.3923-3939, 2001
    53. Zhao, X., Xie, J. and Leung, J., “The impact of forecasting model selection on the value of information sharing in a supply chain”, European Journal of Operational Research, 142, pp.321-344, 2002
    54. Zhao, X. and Xie, J., “Forecasting errors and the value of information sharing in a supply chain”, International Journal of Production Research, 40(2), pp.311-335, 2002
    55. Zhao, X., Xie, J. and Zhang, W.J., “The impact of information sharing and ordering co-ordination on supply chain performance”, Supply Chain Management: An International Journal, 7(1), pp.24-40, 2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE