研究生: |
曾子懷 |
---|---|
論文名稱: |
Hi-Nicalon Type-S纖維/碳化矽複合材料應用於核融合Tokamak結構材料輻射效應之研究 |
指導教授: |
開執中
陳福榮 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 氦氣泡 、碳化矽複合材 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在於利用穿透式電子顯微鏡,分析Hi-Nicalon Type-S/Py-C/CVI SiC碳化矽複合材料,是否能承受核融合環境之高能輻射損傷及氦氣、氫氣於材料中的核轉化現象,本實驗在清華大學原科中心建立一套三射束照射系統,利用范式加速器(Van de Graaff Accelerator)照射氦原子;離子佈植機(Ion Implantor)照射氫原子;9SDH串級式加速器(9SDH Tandem Accelerator)照射矽離子,且在照射過程中同時給予加熱(800~1000℃),來模擬核融合環境。照射後分析材料內部變化,並探討氦原子及氫原子在碳化矽複合材的擴散行為,以及三種效應同時存在的效應為何。
研究結果顯示,分析氦矽離子雙射束效應,氦的確能幫助過飽和空孔聚集而成空泡,使空泡不易和間隙原子結合而縮小,並且隨著長時間高溫高劑量下,氦氣泡聚集越大數目變少,但晶粒內與母材層間皆可發現氣泡,應是長時間退火所造成。
分析氦氫雙射束效應,在少量的過飽和空孔之下,氣泡明顯地比氦矽雙射束小,多了氫的作用的確幫助氣泡成核,但氫和氦似乎也扮演著同樣之角色,使空泡穩定化之後就不易再讓其他原子進入,因此在分散成核點的情況下,使氣泡小又多。
分析氦氫矽三射束效應,相較於氦矽雙射束,母材中發現小又多的氣泡,從實驗上來看,其中氫會促進氣泡的數目,也間接抑制氦氣泡成長,但對整體氣泡形成是有幫助的,雖然Hi-Nicalon Type-S/Py-C/CVI SiC在三射束中纖維沒發現氣泡,但卻在另一種碳化矽複合材(Tyranno-SA/Py-C/CVI SiC)纖維中發現氣泡,所以比起氦矽雙射束,三射束輻射效應下使氣泡更容易成核。
參考文獻
1. 李銀安,受控熱核融合,1996,牛頓出版社.
2. 中正化學諮詢月刊12期2001.9
3. 葉陶然,熱核融合研究,核研季刊13期1995.4
4. 林銘政,Tokamak核融合技術之研究,台電工程月刊574期1996.6
5. L.L. Snead, R.H. Jones, A. Kohyama, P. Fenici, J. Nucl. Mater. 233–237 (1996) 26-36
6. R.H. Jones, D. Steiner, H.L. Heinisch, G.A. Newsome, H.M. Kerch, J. Nucl. Mater. 245 (1997) 87-107.
7. 牛頓雜誌, 七月號/1998, 182期, p90~95
8. R.H. Jones, H. L. Heinisch, K.A. McCarthy, J. Nucl. Mater. 271-272 (1999) 518.
9. Satoru Tanaka, Introduction to Fusion Reactor Engineering, 2001.
10. Arthur Beiser, Concepts of Modern Physics, 5th edition, 1995, McGraw-Hill, Inc.
11. R. H. Jones, D. Steiner, H. L. Heinisch, G. A. Newsome, H. M Kerch, J. Nucl. Mater. 245 (1997) 87-107.
12. M. Saito, A. Hasegawa, S.Ohtsuks, K. Abe, J. Nucl. Mater. 258-263 (1998) 1562.
13. Donald R. Olander, Fundamental aspects of nuclear reactor fuel elements.
14. E.V. Dyomina , P. Fenici , V.P. Kolotov , M. Zucchetti Journal of Nuclear Materials 258-263 (1998) 1784-1790.
15. 林博文, ” 碳化矽及其他碳化物 ”, 陶瓷技術手冊(下)修訂版, pp.745-776,1999.
16. SiC/SiC Composites With Improved BN Coating on Fibers John H. Glenn Research Center, Cleveland, Ohio J. Mat Sci. 37(18) 3991-3998.
17. A. G. Evans, “ Perspective on the Development of High Toughness Cera-mic ”, J. Am. Ceram. Soc., 73[2], pp.187-206, (1990)
18. KRISHAN K. CHAWLA, Composite materials 2nd edition, 1998, Springer.
19. Michio Takeda, Yoshikazu Imai, Hiroshi Ichikawa, Noboru Kasai, Tadao Seguchi, Kiyohito Okamura, Comp. Sci. Tech. 59 (1999) 793-799.
20. Michio Takeda, Akira Urano, Jun-ichi Sakamoto, Yoshikazu Imai, J. Nucl. Mater. 258-263 (1998) 1594-159.
21. A. Hasegawa, A. Kohyama, R. H. Jone, L. L. Snead, B. Riccardi, P. Fenici, J. Nucl. Mater. 283-287 (2000) 128-137.
22. Hiroshi Araki, Hiroshi Suzuki, Wen Yang, Shinji Sato, Tetsuji Noda, J. Nucl. Mater. 258-263 (1998) 1540-1545.
23. Development of SiC/SiC Composite for Fusion Application A. Kohyama , Y. Katoh , L.L. Snead and R.H. Jones
24. L.L. Snead, M.C. Osborne, R.A. Lowden, J. Strizak, R.J.Shinavski, K.L.More, W.S. Eatherly, J. Bailey, A.M.Williams, J. Nucl. Mater. 253 (1998) 20.
25. T. Nozawa , T. Hinoki , L.L. Snead , Y. Katoh , A. Kohyama Journal of Nuclear Materials 329–333 (2004) 544–548.
26. T. Taguchi , E. Wakai , N. Igawa , S. Nogami , L.L. Snead,A. Hasegawa , S. Jitsukawa J. Nucl. Mater.307–311 (2002) 1135–1140.
27. 黃忠良編撰,尖端複合材料,PP. 79 (1988).
28. R. Yamada, T. Taguchi, N. Igawa, J. Nucl. Mater. 283-287 (2000) 574-578.
29. T. Hinoki, W. Zhang, A. Kohyama, S. Sato, T. Noda, J. Nucl. Mater. 258-263 (1998) 1567-1571.
30. L. L. Snead, R. H. Jones, A. Kohyama, P. Fenici, J. Nucl. Mater. 233-237 (1996) 26-36.
31. C. A. Lewinsohn, R. H. Jones, G. E. Youngblood, C. H. Henager Jr. J. Nucl. Mater. 258-263 (1998) 1557-1561.
32. C.H. Henager Jr., R.H. Jones, J. Am Ceram. Soc. 77(1994) 2381
33. Michio Takeda, Yoshikazu Imai, Yutaka Kagawa, Shu-Qi Guo, Mater. Sci. Eng. A286 (2000) 312-323.
34. T. Hinoki, W. Yang. T. Nozawa, T. Shibayama, Y. Katoh, A. Kohyama, J. Nucl. Mater. 289 (2001) 23-29.
35. S. Bertrand, C. Droillard, R. Pailler, X. Bourrat, R. Naslain, J. Euro. Ceram. Soc. 20 (2000) 1-13.
36. H. Kishimoto , Y. Katoh , A. Kohyama J. Nucl. Mater. 307–311 (2002) 1130–1134.
37. G.R. Hopkins, R.J. Price, Nucl. Eng. Des. 2(1984) 1.
38. Tatsuki Ohji, Young-Keun Jeong, Yong-Ho Choa, and Koichi Niihara, J.Am. Ceram.Soc. 81[6], pp.1453-1460, (1998)
39. A. Idesaki, M. Narisawa, K. Okmura, M.Sugimoto, Y. Morita, T.Seguchi, and M. Itoh, Key Engineering Materials, Vol. 164-165, pp. 39-42, (1999)
40. X. Zhou, C. Zhang, J. Ma and A. Zhou, Key Engineering Materials, Vol. 164-165, pp. 43-48, (1999)
41. Y. Katoh, A. Kohyama, Introduction to Fusion Reactor Engineering.
42. J. J. Brennan, Acta Mater. 48(2000) 4619-4628.
43. S. P. Lee, Y. Katoh, J. S. Park, S. Dong, A. Kohyama, S. Suyama, H. K. Yoon, J. Nucl. Mater. 289 (2001) 30-36.
44. S. P. Lee, Y. Katoh, A. Kohyama, Scripta mater. 44 (2001) 153-157.
45. J. W. Warren, Ceram. Eng. Sci. Proc., (1985)
46. T. M. Besmann, B.W. Sheldon, R.A. Lowden, and D. P. Stinton, Science, Vol. 253, (1991)
47. M.A. Pickering, Mater. Res. Soc. Symp. Proc. 250 (1993) 145
48. A.R. Raffray, R.Jones, G. Aiello, M. Billone, L. Giancarli et al., Fusion Engng Des. 55 (2001) 55.
49. J.F. Ziegler, J.P. Biersack, and U. Littmark, Stopping and Range of Ions in Solids, Vol. 1 (Pergamon Press, New York,1985)
50. 物理會刊十二卷一期1990年.
51. 汪建民, 杜正恭, 材料分析 中國材料科學學會 1998.
52. R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, (1996)
53. H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicorsc., 19:121 (1986)
54. F. Hofer and P. Warbichler, Ultramucrosc., 63:21 (1996)
55. N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) 351 (1988)
56. A. Berger, J. Mayer and H. Kohl, Ultramicrosc., 55:101 (1994)
57. P. A. Crozier and R. F. Egerton, Ultramicrosc., 27:9 (1988)
58. D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996)
59. T. Malis, S. Cheng and R. F. Egerton, J. Electron. Microsc. Tech. 8:8471 (1988)
60. P. Jung, J. Nucl. Mater. 191–194 (1992) 377.
61. A. Hasegawa, M. Saito, S. Nogami, K. Abe, R.H. Jones, H. Takahashi, J. Nucl. Mater. 264 (1999) 355.
62. M. Ohring, The material Science of Thin Films, 1st edition, 1992,New Zerssy.
63. Geochimica et Cosmochimica Acta, Vol. 67, No. 24, pp. 4743–4767, 2003.
64. L.L. Snead, J.C. Hay, J. Nucl. Mater. 273 (1999) 213.
65. L.L. Snead, S.J. Zinkle, Materials Research Society, Pittsburgh, PA, 1997, p.595.
66. Y. Pramono, M. Imai, T. Yano, J. Nucl. Sci. Technol. 40 (7) (2003) 531.
67. V. Philipps, K. Sonnenberg, J. Nucl. Mater. 107 (1982) 271.
68. A. Hasegawa, B. M. Oliver, S. Nogami, K. Abe, R. H. Jones, J. Nucl. Mater. 283-287 (2000) 811-815.
69. Hasegawa, S. Miwa, S. Nogami, A. Taniguchi, T. Taguchi, K. Abe, Journal of Nuclear Materials 329–333 (2004) 582–586.
70. K. Hojou, S. Furuno, K.N. Kushita, H. Otsu, K. Izui, Nucl. Instr. and Meth. Phys. Res. B 91 (1994) 534.
71. T.Taguchi, N. Igawa, S. Miwa, E. Wakai, S. Jitsukawa, L.L. Snead, A. Hasegawa, Journal of Nuclear Materials 335 (2004) 508–514.
72. 陳建文,國立清華大學工程與系統科學研究所碩士論文(2002).
73. 方柏傑,國立清華大學工程與系統科學研究所碩士論文(2002).
74. 耿緒祖,國立清華大學工程與系統科學研究所碩士論文(2005).
75. G.A. Esteban, A. Perujo, F. Legarda, L.A. Sedano, B. Riccardi, Journal of Nuclear Materials 307–311 (2002) 1430–1435.