研究生: |
吳宜蓁 Wu, Yi-Jen |
---|---|
論文名稱: |
金-氧化鎵一維異質結構奈米線的電漿子光學性質與光電性質研究 Plasmonic and Optoelectronic Properties of One-Dimensional Gold-in-Ga2O3 Nanowires |
指導教授: |
周立人
Chou, Li-Jen 陳力俊 Chen, Lih-Juann |
口試委員: |
林麗瓊
蔡定平 郭浩中 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 金-氧化鎵異質結構奈米線 、侷域性表面電漿子/侷域性表面電漿共振 、光學顯微鏡顯微光譜 、光激發光譜 、克爾文氏力(靜電力)顯微術 |
外文關鍵詞: | Gold-in-Ga2O3 peapod and core-shell nanowires, Localized surface plasmons/Localized surface plasmon resonance, Optical microscopy and spectroscopy, Photoluminescence, Kelvin probe force microscopy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This dissertation aims to explore fundamental plasmonic and optoelectronic properties and possible photonic applications for one-dimensional gold-in-Ga2O3 peapod and core-shell nanowires. Single-crystalline gold-in-Ga2O3 nanowires have been systematically synthesized by a bottom-up method and a wide range characterized of their peculiar properties. The diameters and interparticle distances of gold peas, core diameters and core lengths of gold rods, were tuned during material growth in a controlled manner. Morphology, microstructure and composition of as-grown nanowires were characterized through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) analyses. Light-scattering properties and light-interference phenomena of individual gold-in-Ga2O3 nanowires were investigated by dark-field optical microscopy (OM). Light-emission properties of gold-in-Ga2O3 nanowires were studied by photoluminescence (PL) and electroluminescence (EL) spectroscopy. Surface potential distributions of single gold-in-Ga2O3 nanowires illuminated with a green light source of 532 nm in wavelength were revealed by Kelvin probe force microscopy (KPFM) and optical microscopy under ambient conditions with exceptional spatial and energy resolution.
The major peaks in measured scattering spectra were suggested to result from plasmonic resonance of the gold nanopeas and nanorods embedded in the Ga2O3 nanowires when comparing with simulation data from Mie and Gans calculations. The cladding Ga2O3 dielectric layer was considered as a surrounding medium for localized plasmon resonance on gold nanostructures and played a key role in light-scattering properties. Light-interference spectra of single gold-in-Ga2O3 peapod nanowires excited with a white light source in p-polarization demonstrated their applicability of being plasmonic nano-resonators. During the optical resonance, the Ga2O3 shell provided a wave-guiding medium for surface plasmon wave and scattered light of short propagation length bouncing back and forth within the nanowire. Photoluminescence and electroluminescence studies of gold-in-Ga2O3 nanowires indicated that luminescence of outer single-crystalline Ga2O3 matrix further excites localized plasmon resonance in inner gold nanostructures as the nanowire is properly optically-excited. Surface potential images of single gold-in-Ga2O3 nanowires under the illumination of selective light source presented direct evidence for energy flow from applied electromagnetic wave to gold-in-Ga2O3 complex nanostructures and quantified the induced electric potential fluctuations in the nanowires; which helped depict a detailed profile of the physical mechanism for the nanowires working at plasmon frequencies.
The investigation results of plasmonic and optoelectronic properties of one-dimensional gold-in-Ga2O3 peapod and core-shell nanowires would be applied to the optimum design of related nano-photonic devices and further extend to similar kinds of complex nanowires for enhanced performance, eventually function as an integrated element in optical nano-circuits.
這本論文主要探討一維異質氧化鎵包金豆莢結構奈米線與核殼結構奈米線之電漿子光學性質與光電性質,並構思可能的光電應用。單晶型態一維金-氧化鎵異質結構奈米線系統性的由化學合成法製造;其微結構與成分組成由材料檢測分析確認。豆莢結構奈米線內部金顆粒的直徑與顆粒間距;與核殼結構奈米線內部金柱的直徑與長度,在材料成長過程中加以控制。成長出的奈米線其外型、微結構、化學成分組成,經由掃描式電子顯微鏡、X光繞射分析儀、穿透式電子顯微鏡等檢測分析法來確認。進一步利用光學顯微術研究單一金-氧化鎵異質結構奈米線的光散射特性與光干涉特性;利用光激發光以及電激發光量測分析技術研究金-氧化鎵異質結構奈米線的激光特性。最後利用原子力顯微術之克爾文氏力(靜電力)顯微術研究單根金-氧化鎵異質結構奈米線在單色光源綠光照射下奈米線的表面電位分佈變化情況。
量測所得的金-氧化鎵異質結構奈米線的遠場光散射光譜上的主要波峰,對照古典光學理論計算結果,推測是由奈米線內部金奈米結構產生電漿子震盪所造成。奈米線外殼氧化鎵包覆層在金屬奈米結構的電漿子震盪過程中作為外圍介電質環境與反應介面,影響奈米線的光散射性質。由白光激發的豆莢結構奈米線的光干涉光譜展示了利用金-氧化鎵豆莢結構奈米線作為奈米光學共振腔的可能性。高折射係數的氧化鎵外殼提供金屬奈米結構的表面電漿波以及產生的散射光在奈米線內部金屬結構間傳播的介質。金-氧化鎵異質結構奈米線的光激發光譜與電激發光譜顯示單晶態氧化鎵的激光可再次激發奈米線內部金屬奈米結構產生電漿子共振現象。金-氧化鎵異質結構奈米線的表面電位圖則提供了能量由外部施加的單色光源轉換到奈米線內部而相應產生表面電位變化的直接定量證據,幫助理解金屬奈米結構電漿子共振現象以及金-氧化鎵異質結構奈米線光電轉換的物理機制。
對於這些以金-氧化鎵異質結構奈米線為主的光學性質與光電性質的研究成果,將推廣到其他相似異質結構奈米線作更多奈米光電應用。
Chapter 1 Introduction
[1-1] Quimby, R. S. Photnics and Lasers: An Introduction. Hoboken, NJ: John Wiley, 2006.
[1-2] Ohtsu, M.; Kobayashi, K.; Kawazoe, T.; Tatsui, T.; Naruse, M. Principles of Nanophotonics. Boca Raton: CRC Press, 2008, 1-18.
[1-3] A European Roadmap for Photonics and Nanotechnologies. MONA Consortium (Merging Optics and Nanotechnologies), 2008.
[1-4] Lu, W.; Lieber, C. M. Semiconductor Nanowires. J. Phys. D: Appl. Phys. 2006, 39, R387-R406.
[1-5] Lieber, C. M.; Wang, Z. L. Functional Nanowires. MRS Bull. 2007, 32, 99-108.
[1-6] (a) Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. On-Wire Lithography. Science 2005, 309, 113-115. (b) Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Designing, Fabricating, and Imaging Raman Hot Spots. P. Natl. Acad. Sci. USA. 2006, 103, 13300-13303.
[1-7] (a) Qin, Y.; Lee, S. M.; Pan, A.; G□sele, U.; Knez, M. Rayleigh-Instability-Induced Metal Nanoparticle Chains Encapsulated in Nanotubes Produced by Atomic Layer Deposition. Nano Lett. 2008, 8, 114-118. (b) Qin, Y.; Liu, L. F.; Yang, R. B.; G□sele, U.; Knez, M. General Assembly Method for Linear Metal Nanoparticle Chains Embedded in Nanotubes. Nano Lett. 2008, 8, 3221-3225.
[1-8] Hu, M.-S.; Chen, H.-L.; Shen, C.-H.; Hong, L.-S.; Huang, B.-R.; Chen, K.-H.; Chen, L.-C. Photosensitive Gold-Nanoparticle-Embedded Dielectric Nanowires. Nature Mater. 2006, 5, 102-106.
[1-9] Chueh, Y.-L.; Hsieh, C.-H.; Chang, M.-T.; Chou, L.-J.; Lao, C. S.; Song, J. H.; Gan, J.-Y.; Wang, Z. L. RuO2 Nanowires and RuO2/TiO2 Core/Shell Nanowires: From Synthesis to Mechanical, Optical, Electrical, and Photoconductive Properties. Adv. Mater. 2007, 19, 143-149.
[1-10] Hsieh, C.-H.; Chang, M.-T.; Chien, Y.-J.; Chou, L.-J.; Chen, L.-J.; Chen, C.-D. Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires. Nano Lett. 2008, 8, 3288-3292.
[1-11] Lin, J.; Huang, Y.; Bando, Y.; Tang, C.; Li, C.; Golberg, D. Synthesis of In2O3 Nanowire-Decorated Ga2O3 Nanobelt Heterostructures and Their Electrical and Field-Emission Properties. ACS Nano 2010, 4, 2452-2458.
[1-12] Wang, C.-Y.; Chen, L.-J. Nanothermometers for Transmission Electron Microscopy -Fabrication and Characterization. Eur. J. Inorg. Chem. 2010, 2010, 4298-4303.
[1-13] Chen, M.-T.; Lu, M.-P.; Wu, Y.-J.; Song, J., Lee, C.-Y.; Lu, M.-Y.; Chang, Y.-C.; Chou, L.-J.; Wang, Z. L.; Chen, L.-J. Near UV LEDs Made with In-situ Doped p-n Homojunction ZnO Nanowire Arrays. Nano Lett. 2010, 10, 4387-4393.
[1-14] Hsieh, C.-H.; Chou, L.-J.; Lin, G.-R.; Bando, Y.; Golberg, D. Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires. Nano Lett. 2008, 8, 3081-3085.
[1-15] Chen, P.-H.; Hsieh, C.-H.; Chen, S.-Y.; Wu, C.-H.; Wu Y.-J.; Chou, L.-J.; Chen, L.-J. Direct Observation of Au/Ga2O3 Peapodded Nanowires and Their Plasmonic Behaviors. Nano Lett. 2010, 10, 3267-3271.
[1-16] Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics Beyond the Diffraction Limit. Nature Photon. 2010, 4, 569-576.
[1-17] Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for Extreme Light Concentration and Manipulation. Nature Mater. 2010, 9, 193-204.
Chapter 2 Literature Review
[2-1] Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles. New York: Wiley-VCH, 1983, Chapter 3, Chapter 9, Chapter 11.
[2-2] Papavassiliou, G. C. Optical Properties of Small Inorganic and Organic Metal Particles. Prog. Solid St. Chem.1980, 12, 185-271.
[2-3] Barber, P. W.; Chang, R. K. Optical Effects Associated with Small Particles. Singapore; Teaneck, NJ, USA: World Scientific, 1988, 279-318.
[2-4] Maier, S. A. Plasmonics, Fundamentals and Applications. New York: Springer, 2007.
[2-5] Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
[2-6] Datta, S. Electronic Transport in Mesoscopic Systems. Cambridge; New York: Cambridge University Press, 1995, 276-292.
[2-7] (a) Engheta, N., Salandrino, A.; Al□, A. Circuit Elements at Optical Frequencies: Nano-Inductors, Nano-Capacitors and Nano-Resistors. Phys. Rev. Lett. 2005, 95, 095504. (b) Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials. Science 2007, 317, 1698-1702.
Chapter 3 Experimental Sections
[3-1] Seiler, H. Secondary Electron Emission in the Scanning Electron Microscope. J. Appl. Phys. 1983, 54, R1-R18.
[3-2] Davidson, M. W.; Abramowitz, M. Optical Microscopy. Olympus America, Inc.
[3-3] (a) Hsieh, C.-H.; Chou, L.-J.; Lin, G.-R.; Bando, Y.; Golberg, D. Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires. Nano Lett. 2008, 8, 3081-3085. (b) Hsieh, C.-H.; Chang, M.-T.; Chien, Y.-J.; Chou, L.-J.; Chen, L.-J.; Chen, C.-D. Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires. Nano Lett. 2008, 8, 3288-3292.
[3-4] Chen, P.-H.; Hsieh, C.-H.; Chen, S.-Y.; Wu, C.-H.; Wu Y.-J.; Chou, L.-J.; Chen, L.-J. Direct Observation of Au/Ga2O3 Peapodded Nanowires and Their Plasmonic Behaviors. Nano Lett. 2010, 10, 3267-3271.
[3-5] (a) Qin, Y.; Lee, S. M.; Pan, A.; G□sele, U.; Knez, M. Rayleigh-Instability-Induced Metal Nanoparticle Chains Encapsulated in Nanotubes Produced by Atomic Layer Deposition. Nano Lett. 2008, 8, 114-118. (b) Qin, Y.; Liu, L. F.; Yang, R. B.; G□sele, U.; Knez, M. General Assembly Method for Linear Metal Nanoparticle Chains Embedded in Nanotubes. Nano Lett. 2008, 8, 3221-3225.
[3-6] Mason, G. An Experimental Determination of the Stable Length of Cylindrical Liquid Bubbles. J. Colloid Interface Sci. 1970, 1, 172-176.
[3-7] Okamoto, H.; Massalski, T. B. Phase Diagrams of Binary Gold Alloys. Metals Park, Ohio: ASM International, 1987, 112.
[3-8] Nonnenmacher, M.; O’Boyle, M. P.; Wickramasinge, H. K. Kelvin Probe Force Microscopy. Appl. Phys. Lett. 1991, 58, 2921-2923.
[3-9] Meyer, E.; Hug, H. J.; Bennewitz, R. Scanning Probe Microscopy: The Lab on a Tip. Berlin; New York: Springer, 2004, 79-80.
[3-10] Kalinin, S. V.; Gruverman, A. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. New York: Springer, 2007, 113-131; 355-357; 663-689.
[3-11] Martin, Y; Abraham, D. W.; Wickramasinghe, H. K. High-Resolution Capacitance Measurement and Potentiometry by Force Microscopy. Appl. Phys. Lett. 1988, 52, 1103-1105.
[3-12] McCormick, K. L.; Woolside, M. T.; Huang, M.; Wu, M.; McEuen, P. L.; Duruoz, C.; Harris, Jr., J. S. Scanned Potential Microscopy of Edge and Bulk Currents in the Quantum Hall Regime. Phys. Rev. B 1999, 59, 4654-4657.
Chapter 4 Light-Scattering Spectroscopy of Gold-in-Gallium Oxide Peapod and Core-Shell Nanowires
[4-1] Hsieh, C.-H.; Chou, L.-J.; Lin, G.-R.; Bando, Y.; Golberg, D. Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires. Nano Lett. 2008, 8, 3081-3085.
[4-2] Quinten, M.; Leitner, A.; Krenn, J. R.; Aussenegg, F. R. Electromagnetic Energy Transport via Linear Chains of Silver Nanoparticles. Opt. Lett. 1998, 23, 1331-1333.
[4-3] Rockstuhl, C.; Salt, M. G.; Herzig, H. P. Analyzing the Scattering Properties of Coupled Metallic Nanoparticles. J. Opt. Soc. Am. A 2004, 21, 1761-1768.
[4-4] Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J. R.; Lamprecht, B.; Aussenegg, F. R. Optical Properties of Two Interacting Gold Nanoparticles. Opt. Commun. 2003, 220, 137-141.
[4-5] Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles. Nano Lett. 2003, 3, 1087-1090.
[4-6] Wei, Q.-H.; Su, K.-H.; Durant, S.; Zhang, X. Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains. Nano Lett. 2004, 4, 1067-1071.
[4-7] Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Designing, Fabricating, and Imaging Raman Hot Spots. P. Natl. Acad. Sci. USA. 2006, 103, 13300-13303.
[4-8] Papavassiliou, G. C. Optical Properties of Small Inorganic and Organic Metal Particles. Prog. Solid St. Chem.1980, 12, 185-271.
[4-9] Passlack, M.; Schubert, E. F.; Hobson, W. S.; Hong, M.; Moriya, N.; Chu, S. N. G.; Konstadinidis, K.; Mannaerts, J. P.; Schnoes, M. L.; Zydzik, G. J. Ga2O3 Films for Electronic and Optoelectronic Applications. J. Appl. Phys. 1995, 77, 686-693.
[4-10] Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410-8426.
[4-11] Link, S.; El-Sayed, M. A. Additions and Corrections. J. Phys. Chem. B 2005, 109, 10531-10532.
[4-12] Johnson, P. B.; Christy, R. W. Optical Constants of Noble Metals. Phy. Rev. B 1972, 6, 4370-4379.
[4-13] Fano, U. Effects of Configuration Interactions on Intensities and Phase Shifts. Phys. Rev. 1961, 124, 1866-1878.
[4-14] Miroshnichenko, A. E.; Flach, S.; Kivshar, Y. S. Fano Resonances in Nanoscale Structures. Rev. Mod. Phys. 2010, 82, 2257-2298.
[4-15] Luk’yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.; Chong, C. T. The Fano Resonance in Plasmonic Nanostructures and Metamaterials. Nature Mater. 2010, 9, 707-715.
Chapter 5 Interference, PL and EL of Gold-in-Gallium Oxide Nanowires
[5-1] Johnson, P. B.; Christy, R. W. Optical Constants of Noble Metals. Phy. Rev. B 1972, 6, 4370-4379.
[5-2] We express our gratitute to Prof. Din Ping Tsai, Dr. Kuo-Pin Chiu, and Mr. Liang-Da Lin at National Taiwan University for valuable discussions and electric-field mapping.
[5-3] van Vugt, L. K.; Zhang, B.; Piccione, B.; Spector, A. A.; Agarwal, R. Size-Dependent Waveguide Dispersion in Nanowire Optical Cavities: Slowed Light and Dispersionless Guiding. Nano Lett. 2009, 9, 1684-1688.
[5-4] Sorger, V. J.; Oulton, R. F.; Yao, J.; Bartal, G.; Zhang, X. Plasmonic Fabry-P□rot Nanocavity. Nano Lett. 2009, 9, 3489-3493.
[5-5] Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers, M.; Hofer, F.; Aussenegg, F. R.; Krenn, J. R. Silver Nanowires as Surface Plasmon Resonators. Phy. Rev. Lett. 2005, 95, 257403.
[5-6] Allione, M.; Temnov, V. V.; Fedutik, Y.; Woggon, U.; Artemyev, M. V. Surface Plasmon Mediated Interference Phenomena in Low-Q Silver Nanowire Cavities. Nano Lett. 2008, 8, 31-35.
[5-7] Huang, H. J.; Yu, C. P.; Chang, H. C.; Chiu, K. P.; Chen, H. M.; Liu, R. S.; Tsai, D. P. Plasmonic Optical Properties of a Single Gold Nano-Rod. Opt. Express 2007, 15, 7132-7139.
[5-8] Wiley, B. J.; Lipomi, D. J.; Bao, J.; Capasso, F.; Whitesides, G. M. Fabrication of Surface Plasmon Resonators by Nanoskiving Single-Crystalline Gold Microplates. Nano Lett. 2008, 8, 3023-3028.
[5-9] Lyvers, D. P.; Moon, J.-M.; Kildishev, A. V.; Shalaev, V. M.; Wei, A. Gold Nanorod Arrays as Plasmonic Cavity Resonators. ACS Nano 2008, 2, 2569-2576.
[5-10] Notomi, M.; Yamada, K.; Shinya, A.; Takahashi, J.; Takahashi, C.; Yokohama, I. Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs. Phys. Rev. Lett. 2001, 87, 253902.
[5-11] Temnov, V. V.; Woggon, U.; Dintinger, J.; Devaux, E.; Ebbesen, T. W. Surface Plasmon Interferometry: Measuring Group Velocity of Surface Plasmons. Opt. Lett. 2007, 32, 1235-1237.
[5-12] We acknowledge Mr. Sin-An Chen for providing gold-in-SnO2 nanowires of high-quality.
[5-13] Mohamed, M. B.; Volkov, V.; Link, S.; El-Sayed; M. A. The “Lightning” Gold Nanorods: Fluorescence Enhancement of over a Million Compared to the Gold Metal. Chem. Phys. Lett. 2000, 317, 517-523.
[5-14] Dulkeith, E.; Niedereichholz, T.; Klar, T. A.; Feldmann, J.; Plessen, G.; Gittins, D. I.; Mayya, K. S.; Caruso, F. Plasmon Emission in Photoexcited Gold Nanoparticles. Phys. Rev. B 2004, 70, 205424.
Chapter 6 Surface Potential Mapping of Gold-in-Gallium Oxide Nanowires with Kelvin Probe Force Microscopy
[6-1] Schnell, M.; Garc□a-Etxarri, A.; Huber, A. J.; Crozier, K.; Aizpurua, J.; Hillenbrand, R. Controlling the Near-field Oscillations of Loaded Plasmonic Nanoantennas. Nature Photon. 2009, 3, 287-291.
[6-2] Falk, A. L.; Koppens, F. H. L.; Yu, C. L.; Kang, K.; de Leon Snapp, N.; Akimov, A. V.; Jo, M.-H., Lukin, M. D.; Park, H. Near-field Electrical Detection of Optical Plasmons and Single Plasmon Sources. Nature Phys. 2009, 5, 475-479.
[6-3] Seiler, H. Secondary Electron Emission in the Scanning Electron Microscope. J. Appl. Phys. 1983, 54, R1-R18.
[6-4] Nonnenmacher, M.; O’Boyle, M. P.; Wickramasinge, H. K. Kelvin Probe Force Microscopy. Appl. Phys. Lett. 1991, 58, 2921-2923.
[6-5] Meyer, E.; Hug, H. J.; Bennewitz, R. Scanning Probe Microscopy: The Lab on a Tip. Berlin; New York: Springer, 2004, 79-80.
[6-6] Kalinin, S. V.; Gruverman, A. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. New York: Springer, 2007, 113-131; 663-689.
[6-7] Palermo, V.; Palma, M.; Samor□, P. Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy. Adv. Mater. 2006, 18, 145-164.
[6-8] Minot, E. D.; Kelkensberg, F.; van Kouwen, M.; van Dam, J. A.; Kouwenhoven, L. P.; Zwiller, V.; Borgstr□m, M. T.; Wunnicke, O.; Verheijen, M. A.; Bakkers, E. P. A. M. Single Quantum Dot Nanowire LEDs. Nano Lett. 2007, 7, 367-371.
[6-9] Egger, S.; Ilie, A.; Machida, S.; Nakayama, T. Integration of Individual Nanoscale Structures into Devices Using Dynamic Nanostenciling. Nano Lett. 2007, 7, 3399-3404.
[6-10] Gross, L.; Mohn, F.; Liljeroth, P.; Repp, J.; Giessibl, F. J.; Meyer, G. Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy. Science 2009, 324, 1428-1431.
[6-11] Haussmann, A.; Milde, P.; Erler, C.; Eng, L. M. Ferroelectric Lithography: Bottom-up Assembly and Electrical Performance of a Single Metallic Nanowire. Nano Lett. 2009, 9, 763-768.
[6-12] Koren, E.; Berkovitch, N.; Rosenwaks, Y. Measurement of Active Dopant Distribution and Diffusion in Individual Silicon Nanowires. Nano Lett. 2010, 10, 1163-1167.
[6-13] Lin, J.; Huang, Y.; Bando, Y.; Tang, C.; Li, C.; Golberg, D. Synthesis of In2O3 Nanowire-Decorated Ga2O3 Nanobelt Heterostructures and Their Electrical and Field-Emission Properties. ACS Nano 2010, 4, 2452-2458.
[6-14] Anderson, P. A. Work Function of Gold. Phys. Rev. 1959, 115, 553-554.