簡易檢索 / 詳目顯示

研究生: 李家豪
Chia-Hau Li
論文名稱: 利用Walsh碼展頻而適用於WiMAX用戶端設計的MIMO-OFDM架構
A MIMO-OFDM Scheme Based on Walsh Coding Spreading for WiMAX CPE Design
指導教授: 鐘太郎
Tai-Lang Jong
丁原梓
Yuan-Tzu Ting
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 正交分頻多工多重輸入多重輸出多天線傳輸展頻分集
外文關鍵詞: OFDM, MIMO, spread spectrum, multiple antenna, diversity, WiMAX, IEEE802.16
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的無線通訊架構中,由於系統的傳輸率要求愈來愈高,因此愈來愈多的傳輸規格皆採用正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)作為調變的技術,其優點是可以提高頻譜的使用效率,進而提供更高的傳輸速率(data rate)。
    除此之外,近年的研究中指出,理論上,利用多重天線傳輸的系統架構,由於獨立傳輸路徑數(或稱空間分集數)的增加,可提高通道容積(channel capacity),這麼一來便突破了以往單一天線對傳的效能限制;因此多重輸入多重輸出(Multi-input Multi-output, MIMO)傳輸方式對通訊系統的效能增進亦備受矚目,所衍生的主題不僅在傳輸架構上,MIMO系統中的特殊編碼-時空碼(Space-Time Code, STC)的編碼方式也常被研究,因為時空碼便是在如何讓空間達最大分集(spatial diversity)上扮演極重要的角色。
    綜合上述兩種技術的優點,因此結合OFDM及MIMO的系統,在近期的許多新傳輸標準中皆被採用,例如:IEEE 802.11n、IEEE 802.16-2004及IEEE 802.16e。
    然而值得注意的是,無論是正交分頻多工系統中的通道等化器(channel equalizer),或是多重輸入多重輸出系統中的時空解碼器(space time decoder),通道估測(channel estimation)都扮演著重要的角色,不過由於它複雜的電路運算,因此一些相關研究論文中,便對於如何去簡化或避免通道估測提出了新的架構或演算法。
    針對相同的問題,在此篇論文中,我們以IEEE802.16-2004標準定義的實體層(Physical layer)為基礎,提供了一個分頻雙工(Frequency Division Duplex, FDD)模式的多輸入多輸出正交分頻多工(MIMO-OFDM)系統架構,並在下行線路(downlink)中採用展頻(spread spectrum)的技術,以達成簡化用戶端運算電路的目標。


    As wireless communication systems demand for higher and higher transmission rate, there are more and more transmission standards adopt OFDM (Orthogonal Frequency Division Multiplexing) technique as the modulation process because it can improve the efficiency of bandwidth usage. Besides, some recent researches have proved that the channel capacity can be enhanced when transmission systems use multiple antennas, due to the increase of independent transmission paths (or called spatial diversity). It breaks the limit of the performance in the single antenna transmission systems. Recently, many researches exploring the improvements of the MIMO (Multiple Input Multiple Output) system have been conducted, not only on the architecture, but also on the specific coding algorithms in the MIMO system, especially the Space-Time Code (STC) because the STC plays an important role on maximizing the spatial diversity. According to the above description, the system combines OFDM and MIMO techniques would exhibit both high data rate and high performance properties. Hence, there are many new transmission standards which have adopted both techniques. For example, IEEE 802.11n、IEEE 802.16-2004 and IEEE 802.16e.
    In the MIMO-OFDM system, the channel estimation has played a critical role in determining the performances of either the channel equalizer in an OFDM or the space-time decoder in a MIMO. But, the channel estimation needs a complex circuit operation. Hence, there are some related researches which have proposed new architectures or algorithms to reduce the complexity of channel estimation. In this thesis, we propose a novel MIMO-OFDM architecture for achieving such purpose of high performance and low circuit complexity. The proposed architecture is based on the physical layer in IEEE 802.16-2004 standard and operates in FDD mode transmission. Moreover, we use the spread spectrum technique in the downlink to further reduce the complexity of the processing circuit in Customer Premises Equipment.

    中文摘要 i 英文摘要 ii 誌謝 iii 章節目錄 iv 圖表目錄 v 1、 簡介 1 2、 OFDM系統之傳輸架構 4 2.1、 OFDM symbol描述 4 2.1.1. 時域 4 2.1.2. 頻域 5 2.2、 基頻系統模型 6 2.3、 傳輸端資料處理 7 2.3.1. 通道編碼 7 2.3.1.1. 隨機編碼 (Randomizer / De-randomizer) 8 2.3.1.2. 迴旋編碼 (Convolutional encoder / Viterbi decoder) 9 2.3.1.3. 位元交錯 (Interleaver / De-interleaver) 11 2.3.1.4. 資料調變 (Modulation, Constellation Mapping) 12 2.3.2. 訊號調變 13 2.4、 接收端資料處理 14 2.4.1. 時域訊號處理 15 2.4.1.1. 封包偵測 (Packet Detection) 15 2.4.1.2. 時間同步 (Timing Synchronization) 16 2.4.1.3. 頻率偏移估測 (Frequency Offset Estimation) 18 2.4.2. 頻域訊號處理 20 2.4.2.1. 通道估測 (Channel Estimation) 20 2.4.2.2. 載波相位追蹤 (Carrier Phase Tracking, CPT) 21 3、 MIMO傳輸系統簡介 24 3.1、 分集(Diversity)概念簡介 24 3.2、 天線分集理論分析 26 3.3、 接收端分集系統 (Receive Diversity System) 26 3.3.1. 選擇性結合 (Selective Combining) 27 3.3.2. 最佳比例結合 (Maximal Ratio Combining, MRC) 27 3.4、 傳輸端分集系統 (Transmit Diversity System) 29 3.4.1. 時空碼介紹 (Space Time Code, STC) 30 3.5、 Alamouti 架構 33 4、 簡化MIMO-OFDM用戶端設計的新架構簡介 39 4.1、 MIMO-OFDM symbol描述 39 4.2、 MIMO-OFDM基本架構 40 4.2.1. 利用時空碼作通道估測 (Channel Estimation using STC) 42 4.3、 MIMO-OFDM修改架構 44 4.3.1. 介紹所提議的MIMO-OFDM架構 45 4.3.2. 分頻雙工模式(Frequency Division Duplex, FDD) 48 4.3.3. 分頻雙工模式下之載波相位追蹤 52 4.3.4. 展頻技術介紹及應用 54 5、 模擬結果與討論 58 6、 結論與未來展望 64 7、 參考文獻 66

    [1]. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std. 802.16-2004.
    [2]. Ali S. Dakdouki, Victor L. Banket, Nikolai K. Mykhaylov, Alexander A. Skopa, "Downlink Processing Algorithms for Multi-Antenna Wireless Communications", IEEE Communication Magazine, pp.122-127, January 2005.
    [3]. G. J. Foschini, M. J. Gans, "On Limits of Wireless Communication in a Fading Environment when Using Multiple Antennas", Wireless Personal Communication, Kluwer Academic Publishers, pp.311-335, 1998.
    [4]. Vahid Tarokh, Nambi Sechadri, A. R. Calderbank, "Space-Time Codes for High Data Rate Wireless Communivation: Performance Criterion and Code Construction", IEEE Transactions on Information Theory, Vol. 44, pp.744-765, March 1998.
    [5]. Siavash M. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications", IEEE Journal on Selected Areas in Communications, Vol. 16, pp.1451-1458, October, 1998.
    [6]. Vahid Tarokh, Hamid Jafarkhani, A. R. Calderbank, "Space-Time Block Codes from Orthogonal Designs", IEEE Transactions on Information Theory, Vol. 45, pp. 1456-1467, July, 1999.
    [7]. Vahid Tarokh, Hamid Jafarkhani "A Differential Detection Scheme for Transmit Diversity", IEEE Journal on Selected Areas in Communications, Vol. 18, pp.1169-1174, July, 2000.
    [8]. Brian L. Hughes, "Differential Space-Time Modulation", IEEE Transactions on Information Theory, Vol. 46, pp. 2567-2578, Nov., 2000.
    [9]. T. Pollet, M. van Bladel, M. Moeneclaey, "BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise", IEEE Transactions on Communications, Vol. 43, Issue 2, Part 3, pp. 191–193, March, April 1995.
    [10]. T. M. Schmidl, D. C. Cox, "Low-Overhead, Low-Complexity Synchronization for OFDM", IEEE International Conference on Communications, Vol. 3, pp. 1301–1306, 1996.
    [11]. Juha Heiskala and John Terry, "OFDM Wireless LAN: A Theoretical and Practical Guide", SAMS Publishing, 2002.
    [12]. Gregory D. Durgin and Theodore S. Rappaport, "Effects of Multipath Angular Spread on The Spatial Cross-Correlation of Received Voltage Envelopes" IEEE Vehicular Technology Conference, Vol. 2, pp. 996-1000, May, 1999.
    [13]. C.E. Shannon, "A mathematical theory of communication", Bell Labs. Tech. J., 27:379–423, 623–656,1948.
    [14]. G. H. Hardy, J. E. Littlewood, and G. P□lya, "H□lder's Inequality and Its Extensions", Sec. 2.7 and 2.8 in Inequalities, 2nd ed. Cambridge, England: Cambridge University Press, pp. 21-26, 1988.
    [15]. Juan. J.Olmos, "Design and implementation of a wideband real-time mobile channel emulator", IEEE Transaction on Vehicular Technology, Vol.48, no.3, May, 1999.
    [16]. Vahid Tarokh, Siavash M. Alamouti, Patrick Poon, "New Detection Schemes for Transmit Diversity with no Channel Estimation", Universal Personal Communications, 1998. ICUPC ’98. IEEE 1998 International Conference on, Vol. 2, pp. 917-920, Oct., 1998.
    [17]. Branka Vucetic, Jinhong Yuan, "Space-Time Coding", Wiley Publisher, 2003.
    [18]. Hemanth Sampath and Arogyaswami J. Paulraj, "Joint Transmit and Receive Optimization for High Data Rate Wireless Communication Using Multiple Antennas", Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference on, Vol. 1, pp. 215-219, Oct. 1999.
    [19]. Avneesh Agrawal, John Cioffi, "Transmit Optimization for Frequency Division Duplex Multi-Antenna Systems", Vehicular Technology Conference, 2002 Proceedings. VTC 2002-Fall. 2002 IEEE 56th, Vol. 4 pp.1968-1972, Sept., 2002.
    [20]. Ralf Irmer and Gerhard Fettweis, "Combine Transmitter and Receiver Optimization for Multiple-Antenna Frequency-Selective Channels", Wireless Personal Multimedia Communications, 2002. The 5th International Symposium on, Vol. 2, pp. 412-416, Oct., 2002.
    [21]. Laurent Cariou, Jean-Francois Helard, "A Simple And Efficient Channel Estimation For MIMO OFDM Code Division Multiplexing Uplink Systems", Signal Processing Advances in Wireless Communications, 2005 IEEE 6th Workshop on, pp. 176-180, June, 2005.
    [22]. Ji Li, Er-Yang Zhang, "Analysis of the spatial correlation properties of wireless MIMO channel", Communications and Information Technology, 2005. ISCIT 2005. IEEE International Symposium on Vol.1, pp. 222-225, Oct. 2005.
    [23]. Geoffrey J. Byers and Fambirai Takawira, "Spatially and Temporally Correlated MIMO Channels: Modeling and Capacity Analysis", IEEE Transactions on Vehicular Technology, Vol. 53, pp. 634-643, May. 2004.
    [24]. Baoguo Yang, K. B. Letaief, Roger S. Cheng, and Zhigang Cao, "Windowed DFT Based Pilot-Symbol-Aided Channel Estimation for OFDM Systems in Multipath Fading Channels", Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st Vol. 2, pp. 1480-1484, May, 2000.
    [25]. Al-Dhahir, N., "Finite-length channel-shortening space-time equalizers for MIMO linear frequency-selective channels", Signals, Systems and Computers, 2000. Conference Record of the 34 Asilomar Conference on Vol. 1, pp. 705-709, Nov. 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE