研究生: |
侯誌峰 Chih-Feng Hou |
---|---|
論文名稱: |
晶格波茲曼法邊界條件之發展 Development of boundary condition in lattice Boltzmann method |
指導教授: | 林昭安 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 1冊 |
中文關鍵詞: | 晶格波茲曼 、邊界條件 |
外文關鍵詞: | lattice Boltzmann, boundary condition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In the thesis, a lattice Boltzmann boundary treatment for pressure and velocity boundary conditions is presented. A new boundary condition is proposed to handle the unknown distribution functions at the boundaries. We assume every unknown distribution function has a correction term F for modification. The singular corner point is treated by two types of methods, and obtain a close result.
This scheme is applied to two-dimensional Poiseuille flow, Couette flow with wall injection, lid-driven square cavity flow, and three-dimensional Poiseuille flow. Numerical simulations exhibit the scheme is second order accurate in space discretization.
[1] X. Shan and H. Chen, \Lattice Boltzmann model for simulating flows with multiple phases and components," Phys. Rev. E 47, 1815, 1993.
[2] X. Shan and H. Chen, \Simulation of non-ideal gases and liquid-gas phase transition by the lattice Boltzmann equation," Phys. Rev. E 49, 2941, 1994.
[3] A. J. C. Ladd, \Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part I. Theoretical foundation," J. Fluid Mech. 271, 285, 1994;
[4] A. J. C. Ladd, \Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part II. Numerical results," J. Fluid Mech. 271, 311, 1994.
[5] S. Chen, H. Chen and W. H. Matthaeus, \Lattice Boltzmann magneto-hydrodynamics," Phys. Rev. Lett. 67, 3776, 1991.
[6] S. P. Dawson, S. Chen and G. Doolen, \Lattice Boltzmann computations for reactiondi®usion equations," J. Comp. Phys. 98, 1514, 1993.
[7] X. He, Q. Zou, L.-S. Luo and M. Dembo, \Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model," J. Statist. Phys. 87, 115, 1997.
[8] K. Y. Hu and C. A. Lin, \Lattice Boltzmann method for complex and moving boundaries," master thesis, National Tsing Hua Univesity, Taiwan, 2003.
[9] U. Frisch, B. Hasslacher and Y. Pomeau, \Lattice-gas automata for the Navier-Stokes equation," Phys. Rev. Lett. 56, 1505, 1986.
[10] S. Wolfram, \Cellular automaton fluids 1: Basic theory," J. Stat. Phys. 45,471, 1986.
[11] F. J. Higuera, S. Succi and R. Benzi, \3-dimensional flows in complex geometries with the lattice Boltzmann method," Europhys. Lett. 9, 345 1989.
[12] F. J. Higuera and J. Jeme'nez, \Boltzmann approach to lattice gas simulations," Europhys. Lett. 9, 663, 1989.
[13] S. Harris, \An Introduction to the Theory of the Boltzmann Equation," Holt, Rinehart and Winston, New York, 1971.
[14] P. L. Bhatnagar, E. P. Gross and M. Krook, \A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component
systems," Phys. Rev. 94, 511, 1954.
[15] U. Frisch, D. d'Humiµeres, B. Hasslacher, P. Lallemand, Y. Pomeau and J. P. Rivet, \Lattice gas hydrodynamics in two and three dimensions," Complex
Syst. 1, 649, 1987.
[16] D. O. Martinez, W. H. Matthaeus, S. Chen and D. C. Montgomery, \Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics," Phys. Fluids 6, 1285, 1994.
[17] Tamas I. Gombosi, \Gaskinetic Theory," Cambridge University Press, 1994.
[18] X. He and L.-S. Luo, \Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56, 6811, 1997.
[19] D. A. Wolf-Gladrow, \Lattice-Gas Cellular Automata and Lattice Boltzmann Models : An introduction," Springer, 2000.
[20] P. A. Skordos, \Initial and boundary conditions for the lattice Boltzmann method," Phys. Rev. E 48, 4823, 1993.
[21] D. R. Noble, S. Chen, J. G. Georgiadis and R. O. Buckius, \A consistent hydrodynamic boundary condition for the lattice Boltzmann method," Phys. Fluids 7, 203, 1995.
[22] T. Inamuro, M. Yoshino and F. Ogino, \A non-slip boundary condition for lattice Boltzmann simulations," Phys. Fluids 7, 2928, 1995.
[23] S. Hou. Q. Zou, S. Chen, G. Doolen and A. C. Cogley, \Simulation of cavity flow by the lattice Boltzmann method," J. Comp. Phys. 118, 329, 1995.
[24] S. Chen, D. O. Martinez and R. Mei, \On boundary conditions in lattice Boltzmann methods," Phys. Fluids 8, 2527, 1996.
[25] Q. Zou and X. He, \On pressure and velocity boundary conditions for the lattice Boltzmann BGK model," Phys. Fluids 9, 1591, 1997.
[26] R. Maier, R. S. Bernard and D. W. Grunau, \Boundary conditions for the lattice Boltzmann method," Phys. Fluids 8, 1788, 1996.
[27] U. Ghia, K. N. Ghia and C. T. Shin, \High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method," J. Comp. Phys. 48, 387, 1982.
[28] R. Mei, W. Shyy, D. Yu and L.-S. Luo, \Lattice Boltzmann method for 3-D flows with curved boundary," J. Comp. Phys. 161, 680, 2000.
[29] F. M. White, \Viscous Fluid Flow - 2nd ed.," McGraw-Hill, New York, 1991.
[30] D. R. Noble, J. G. Georgiadis and R. O. Buckius, \Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows,"
J. Stat. Phys. 81, 17, 1995.