簡易檢索 / 詳目顯示

研究生: 侯誌峰
Chih-Feng Hou
論文名稱: 晶格波茲曼法邊界條件之發展
Development of boundary condition in lattice Boltzmann method
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 1冊
中文關鍵詞: 晶格波茲曼邊界條件
外文關鍵詞: lattice Boltzmann, boundary condition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In the thesis, a lattice Boltzmann boundary treatment for pressure and velocity boundary conditions is presented. A new boundary condition is proposed to handle the unknown distribution functions at the boundaries. We assume every unknown distribution function has a correction term F for modification. The singular corner point is treated by two types of methods, and obtain a close result.
    This scheme is applied to two-dimensional Poiseuille flow, Couette flow with wall injection, lid-driven square cavity flow, and three-dimensional Poiseuille flow. Numerical simulations exhibit the scheme is second order accurate in space discretization.


    1 Introduction i 1.1 Introduction . . . . . . . . . . . . . . . . . . i 1.2 Literature Survey . . . . . . . . . . . . . . . . ii 1.3 Objective and Motivation . . . . . . . . . . . . iii 2 Lattice Boltzmann Equation v 2.1 The Boltzmann Equation . . . . . .. . . . . . . . v 2.2 Temporal Discretization . . . . . . . . ... . . . ix 2.3 Low-Mach-Number Approximation . . . . . . . . . . xi 2.4 Discretization of Phase Space . . . . . . . . . . xii 3 Numerical Implementation xiv 3.1 Simulation Procedure . . . . . . . . . . . . . . . xiv 3.2 Boundary Conditions in 2-D Simulation . . . . . . .xv 3.2.1 Velocity Boundary Condition . . . . . . . . . . .xvi 3.2.2 Bounce-Back Based Boundary Condition . . . . . . xix 3.2.3 Pressure Boundary Condition . . . . .. . . . . . xx 3.2.4 Corner Treatment . . . . . . . . . . . . . . . . xx 3.3 Boundary Conditions in 3-D Simulation . . . . . . .xxi 3.3.1 Velocity Boundary Condition . . . . . . . . . . .xxii 3.3.2 Bounce-Back Based Boundary Condition . . . . . . xxiv 3.3.3 Pressure Boundary Condition . . . . . . . . . . .xxv 3.3.4 Corner/Edge Treatment . . . . . . . . . . . . . xxv 3.4 Periodic Boundary Condition . . . . . . . . . . . xxvii 4 Results xxx 4.1 2-D Poiseuille Flow in a Channel . . . . . . . . xxx 4.1.1 Periodic Boundary Condition . . . . . . . . . .xxx 4.1.2 Pressure Boundary Condition . . . . . . .. . . xxxi 4.1.3 Velocity Boundary Condition . . . . . . . . .. xxxii 4.2 Couette Flow with Wall Injection . . . . . . . . xxxiii 4.3 Lid-Driven Cavity . . . . . . . . . . . . . . . xxxiii 4.4 3-D Poiseuille Flow in a Square Duct . . . . . xxxiv 4.4.1 Periodic Boundary Condition . . . . . . . . . xxxiv 4.4.2 Pressure Boundary Condition . . . . . . . . xxxv 5 Conclusions xlv

    [1] X. Shan and H. Chen, \Lattice Boltzmann model for simulating flows with multiple phases and components," Phys. Rev. E 47, 1815, 1993.
    [2] X. Shan and H. Chen, \Simulation of non-ideal gases and liquid-gas phase transition by the lattice Boltzmann equation," Phys. Rev. E 49, 2941, 1994.
    [3] A. J. C. Ladd, \Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part I. Theoretical foundation," J. Fluid Mech. 271, 285, 1994;
    [4] A. J. C. Ladd, \Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part II. Numerical results," J. Fluid Mech. 271, 311, 1994.
    [5] S. Chen, H. Chen and W. H. Matthaeus, \Lattice Boltzmann magneto-hydrodynamics," Phys. Rev. Lett. 67, 3776, 1991.
    [6] S. P. Dawson, S. Chen and G. Doolen, \Lattice Boltzmann computations for reactiondi®usion equations," J. Comp. Phys. 98, 1514, 1993.
    [7] X. He, Q. Zou, L.-S. Luo and M. Dembo, \Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model," J. Statist. Phys. 87, 115, 1997.
    [8] K. Y. Hu and C. A. Lin, \Lattice Boltzmann method for complex and moving boundaries," master thesis, National Tsing Hua Univesity, Taiwan, 2003.
    [9] U. Frisch, B. Hasslacher and Y. Pomeau, \Lattice-gas automata for the Navier-Stokes equation," Phys. Rev. Lett. 56, 1505, 1986.
    [10] S. Wolfram, \Cellular automaton fluids 1: Basic theory," J. Stat. Phys. 45,471, 1986.
    [11] F. J. Higuera, S. Succi and R. Benzi, \3-dimensional flows in complex geometries with the lattice Boltzmann method," Europhys. Lett. 9, 345 1989.
    [12] F. J. Higuera and J. Jeme'nez, \Boltzmann approach to lattice gas simulations," Europhys. Lett. 9, 663, 1989.
    [13] S. Harris, \An Introduction to the Theory of the Boltzmann Equation," Holt, Rinehart and Winston, New York, 1971.
    [14] P. L. Bhatnagar, E. P. Gross and M. Krook, \A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component
    systems," Phys. Rev. 94, 511, 1954.
    [15] U. Frisch, D. d'Humiµeres, B. Hasslacher, P. Lallemand, Y. Pomeau and J. P. Rivet, \Lattice gas hydrodynamics in two and three dimensions," Complex
    Syst. 1, 649, 1987.
    [16] D. O. Martinez, W. H. Matthaeus, S. Chen and D. C. Montgomery, \Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics," Phys. Fluids 6, 1285, 1994.
    [17] Tamas I. Gombosi, \Gaskinetic Theory," Cambridge University Press, 1994.
    [18] X. He and L.-S. Luo, \Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56, 6811, 1997.
    [19] D. A. Wolf-Gladrow, \Lattice-Gas Cellular Automata and Lattice Boltzmann Models : An introduction," Springer, 2000.
    [20] P. A. Skordos, \Initial and boundary conditions for the lattice Boltzmann method," Phys. Rev. E 48, 4823, 1993.
    [21] D. R. Noble, S. Chen, J. G. Georgiadis and R. O. Buckius, \A consistent hydrodynamic boundary condition for the lattice Boltzmann method," Phys. Fluids 7, 203, 1995.
    [22] T. Inamuro, M. Yoshino and F. Ogino, \A non-slip boundary condition for lattice Boltzmann simulations," Phys. Fluids 7, 2928, 1995.
    [23] S. Hou. Q. Zou, S. Chen, G. Doolen and A. C. Cogley, \Simulation of cavity flow by the lattice Boltzmann method," J. Comp. Phys. 118, 329, 1995.
    [24] S. Chen, D. O. Martinez and R. Mei, \On boundary conditions in lattice Boltzmann methods," Phys. Fluids 8, 2527, 1996.
    [25] Q. Zou and X. He, \On pressure and velocity boundary conditions for the lattice Boltzmann BGK model," Phys. Fluids 9, 1591, 1997.
    [26] R. Maier, R. S. Bernard and D. W. Grunau, \Boundary conditions for the lattice Boltzmann method," Phys. Fluids 8, 1788, 1996.
    [27] U. Ghia, K. N. Ghia and C. T. Shin, \High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method," J. Comp. Phys. 48, 387, 1982.
    [28] R. Mei, W. Shyy, D. Yu and L.-S. Luo, \Lattice Boltzmann method for 3-D flows with curved boundary," J. Comp. Phys. 161, 680, 2000.
    [29] F. M. White, \Viscous Fluid Flow - 2nd ed.," McGraw-Hill, New York, 1991.
    [30] D. R. Noble, J. G. Georgiadis and R. O. Buckius, \Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows,"
    J. Stat. Phys. 81, 17, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE