研究生: |
黃麟強 Huang, Lin-Chiang Sherlock |
---|---|
論文名稱: |
標靶藥物輸送系統設計應用於硼中子捕獲治癌 Targeted Drug Delivery System Design and Development for Boron Neutron Capture Therapy on Cancer Treatment |
指導教授: |
張大慈
許銘華 |
口試委員: |
張大慈
謝文元 許銘華 林明濬 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 硼中子捕獲治療 、微胞 、含硼藥物 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症為當前人類最危險的威脅,其業已造成世界上最多的傷亡人口數.為了抵抗襲來中的勁敵,人類發展很多療程技術與之對抗.硼中子捕獲治療(BNCT)為其中發展中的治療技術之一,此療法應用超熱中子束撞擊同位素硼-10化合物引發核裂變反應進而生成產生具強大生物效應之α粒子及反跳性鋰核.BNCT為一種二元治療(binary therapy)結合對癌細胞有選擇性且無輻射活性的含硼藥物以及超熱中子束;當含硼藥物與超熱中子束分開時,兩者皆對癌細胞不具有殺傷力,但合併兩個元素時,會對癌細胞產生致死性輻射破壞.這個療法確效的關鍵,在於含硼藥物是否可以精準的傳遞並集中在癌細胞裡.近期發展的奈米藥物技術,可以提升細胞對藥物的有效接收率;將之應用於BNCT中含硼藥物的精準投藥,可提升治療療效.在這次的研究根據眾多的癌細胞追蹤文獻資料以及奈米藥物技術,我們設計並製造一個新型奈米藥物攜帶者原型,並在之後的研究添加擁有缺氧細胞的追蹤功能.
由兩性雙團聯共聚物(amphiphilic diblock copolymer)聚集組成的殼層結構(core-shell structure)之高分子藥物微胞傳輸系統(polymeric micellar drug delivery systems),擁有很多優點,例如增加藥物的水溶性,增進細胞攝取藥物量,躲避免疫系統的偵測等等特性.聚乳酸-聚(2-乙基-2-噁唑啉),poly(D,L-lactide)-b-poly(2-ethyl-2-oxazoline) (PLA-b-PEOz)為一雙團聯共聚物,在本實驗選做為微包的主要結構.本雙團聯共聚物由可被生物可分解的聚乳酸及親水性的聚噁唑啉兩個高分子區塊所組成,兩個高分子皆已通過美國食品藥物檢驗局通過試驗用藥材料許可.我們在這次研究提出一個新的含硼雙團聯共聚物,以pinacol保護的硼酸作為開環聚合反應(ring-opening polymerization)的起始劑,分別依序接上聚乳酸及聚噁唑啉兩個高分子區塊形成含硼雙團聯共聚物,以用於硼中子捕獲治療中含硼藥物的包覆.在往後的實驗,共聚物尾端將接上具有缺氧細胞導向的硝基咪唑分子,其形成的微包期許有預期的癌細胞導向的功能.
1. Barth, R. F.; Coderre, J. A.; Vicente, M. G.; Blue, T. E., Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 2005, 11 (11), 3987-4002.
2. Locher, G. L., Biological effects and therapeutic possibilities of neutrons. Am J Roentgenol Radi 1936, 36, 1-13.
3. Sweet, W. H., Early history of development of boron neutron capture therapy of tumors. J Neurooncol 1997, 33 (1-2), 19-26.
4. Nakagawa, Y.; Hatanaka, H., Boron neutron capture therapy. Clinical brain tumor studies. J Neurooncol 1997, 33 (1-2), 105-15.
5. Lin, T. Y.; Liu, Y. W. H., Development and verification of THORplan-A BNCT treatment planning system for THOR. Appl Radiat Isotopes 2011, 69 (12), 1878-1881.
6. Ferlay, J.; Shin, H. R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010, 127 (12), 2893-917.
7. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D., Global cancer statistics. CA: a cancer journal for clinicians 2011, 61 (2), 69-90.
8. Hanahan, D.; Weinberg, R. A., Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646-74.
9. Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. Cell 2000, 100 (1), 57-70.
10. Yang, L.; Pang, Y.; Moses, H. L., TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends in immunology 2010, 31 (6), 220-7.
11. Qian, B. Z.; Pollard, J. W., Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141 (1), 39-51.
12. Seiwert, T. Y.; Salama, J. K.; Vokes, E. E., The concurrent chemoradiation paradigm--general principles. Nature clinical practice. Oncology 2007, 4 (2), 86-100.
13. Gottesman, M. M., Mechanisms of cancer drug resistance. Annual review of medicine 2002, 53, 615-27.
14. Sawyers, C., Targeted cancer therapy. Nature 2004, 432 (7015), 294-7.
15. Begg, A. C.; Stewart, F. A.; Vens, C., Strategies to improve radiotherapy with targeted drugs. Nature reviews. Cancer 2011, 11 (4), 239-53.
16. Bhide, S. A.; Nutting, C. M., Recent advances in radiotherapy. BMC medicine 2010, 8, 25.
17. Thomlinson, R. H.; Gray, L. H., The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955, 9 (4), 539-49.
18. Brown, J. M.; Wilson, W. R., Exploiting tumour hypoxia in cancer treatment. Nature reviews. Cancer 2004, 4 (6), 437-47.
19. Hockel, M.; Vaupel, P., Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001, 93 (4), 266-76.
20. Vaupel, P.; Mayer, A., Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 2007, 26 (2), 225-39.
21. Wouters, B. G.; Brown, J. M., Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy. Radiat Res 1997, 147 (5), 541-50.
22. Wilson, W. R.; Hay, M. P., Targeting hypoxia in cancer therapy. Nature reviews. Cancer 2011, 11 (6), 393-410.
23. Kjellen, E.; Joiner, M. C.; Collier, J. M.; Johns, H.; Rojas, A., A therapeutic benefit from combining normobaric carbogen or oxygen with nicotinamide in fractionated X-ray treatments. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 1991, 22 (2), 81-91.
24. Overgaard, J.; Hansen, H. S.; Overgaard, M.; Bastholt, L.; Berthelsen, A.; Specht, L.; Lindelov, B.; Jorgensen, K., A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 1998, 46 (2), 135-46.
25. Rischin, D.; Peters, L. J.; O'Sullivan, B.; Giralt, J.; Fisher, R.; Yuen, K.; Trotti, A.; Bernier, J.; Bourhis, J.; Ringash, J.; Henke, M.; Kenny, L., Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol 2010, 28 (18), 2989-95.
26. Krohn, K. A.; Link, J. M.; Mason, R. P., Molecular imaging of hypoxia. J Nucl Med 2008, 49 Suppl 2, 129S-48S.
27. (a) Chapman, J. D., Hypoxic sensitizers--implications for radiation therapy. N Engl J Med 1979, 301 (26), 1429-32; (b) Chapman, J. D.; Franko, A. J.; Sharplin, J., A marker for hypoxic cells in tumours with potential clinical applicability. Br J Cancer 1981, 43 (4), 546-50.
28. Oronsky, B. T.; Knox, S. J.; Scicinski, J., Six degrees of separation: the oxygen effect in the development of radiosensitizers. Translational oncology 2011, 4 (4), 189-98.
29. (a) Brown, J. M., Selective radiosensitization of the hypoxic cells of mouse tumors with the nitroimidazoles metronidazole and Ro 7-0582. Radiat Res 1975, 64 (3), 633-47; (b) Dische, S.; Saunders, M. I.; Lee, M. E.; Adams, G. E.; Flockhart, I. R., Clinical testing of the radiosensitizer Ro 07-0582: experience with multiple doses. Br J Cancer 1977, 35 (5), 567-79.
30. Rosenberg, A.; Knox, S., Radiation sensitization with redox modulators: a promising approach. Int J Radiat Oncol Biol Phys 2006, 64 (2), 343-54.
31. Kizaka-Kondoh, S.; Inoue, M.; Harada, H.; Hiraoka, M., Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 2003, 94 (12), 1021-8.
32. Duncan, R.; Gaspar, R., Nanomedicine(s) under the microscope. Molecular pharmaceutics 2011, 8 (6), 2101-41.
33. Safra, T.; Muggia, F.; Jeffers, S.; Tsao-Wei, D. D.; Groshen, S.; Lyass, O.; Henderson, R.; Berry, G.; Gabizon, A., Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 2000, 11 (8), 1029-33.
34. Wang, A. Z.; Langer, R.; Farokhzad, O. C., Nanoparticle delivery of cancer drugs. Annual review of medicine 2012, 63, 185-98.
35. Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G., Treating metastatic cancer with nanotechnology. Nature reviews. Cancer 2012, 12 (1), 39-50.
36. Nie, S.; Xing, Y.; Kim, G. J.; Simons, J. W., Nanotechnology applications in cancer. Annual review of biomedical engineering 2007, 9, 257-88.
37. Davis, M. E.; Chen, Z. G.; Shin, D. M., Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature reviews. Drug discovery 2008, 7 (9), 771-82.
38. Torchilin, V. P., Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release 2001, 73 (2-3), 137-172.
39. (a) Kwon, G. S.; Okano, T., Polymeric micelles as new drug carriers. Adv Drug Deliver Rev 1996, 21 (2), 107-116; (b) Oku, N.; Namba, Y.; Okada, S., Tumor Accumulation of Novel Res-Avoiding Liposomes. Biochimica Et Biophysica Acta 1992, 1126 (3), 255-260.
40. van Nostrum, C. F., Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliver Rev 2004, 56 (1), 9-16.
41. Ulbrich, K.; Etrych, T.; Chytil, P.; Pechar, M.; Jelinkova, M.; Rihova, B., Polymeric anticancer drugs with pH-controlled activation. International journal of pharmaceutics 2004, 277 (1-2), 63-72.
42. Shieh, M. J.; Peng, C. L.; Chiang, W. L.; Wang, C. H.; Hsu, C. Y.; Wang, S. J.; Lai, P. S., Reduced skin photosensitivity with meta-tetra(hydroxyphenyl)chlorin-loaded micelles based on a poly(2-ethyl-2-oxazoline)-b-poly(d,l-lactide) diblock copolymer in vivo. Molecular pharmaceutics 2010, 7 (4), 1244-53.
43. Chadwick, J., The existence of a neutron. P R Soc Lond a-Conta 1932, 136 (830), 692-708.
44. Fermi, E.; Amaldi, E.; D'Agostino, O.; Rasetti, F.; Segre, E., Artificial radioactivity produced by neutron bombardment. Proc R Soc Lon Ser-A 1934, 146 (A857), 0483-0500.
45. Poller, F.; Sauerwein, W.; Rassow, J., Monte-Carlo Calculation of Dose Enhancement by Neutron-Capture of B-10 in Fast-Neutron Therapy. Phys Med Biol 1993, 38 (3), 397-410.
46. Issa, F.; Kassiou, M.; Rendina, L. M., Boron in Drug Discovery: Carboranes as Unique Pharmacophores in Biologically Active Compounds. Chem Rev 2011, 111 (9), 5701-5722.
47. Calabrese, G.; Nesnas, J. J.; Barbu, E.; Fatouros, D.; Tsibouklis, J., The formulation of polyhedral boranes for the boron neutron capture therapy of cancer. Drug discovery today 2011.
48. Yamamoto, T.; Nakai, K.; Matsumura, A., Boron neutron capture therapy for glioblastoma. Cancer Lett 2008, 262 (2), 143-52.
49. (a) Farr, L. E.; Sweet, W. H.; Robertson, J. S.; Foster, C. G.; Locksley, H. B.; Sutherland, D. L.; Mendelsohn, M. L.; Stickley, E. E., Neutron capture therapy with boron in the treatment of glioblastoma multiforme. The American journal of roentgenology, radium therapy, and nuclear medicine 1954, 71 (2), 279-93; (b) Farr, L. E.; Sweet, W. H.; Locksley, H. B.; Robertson, J. S., Neutron capture therapy of gliomas using boron. Transactions of the American Neurological Association 1954, 13 (79th Meeting), 110-3; (c) Locksley, H. B.; Farr, L. E., The tolerance of large doses of sodium borate intravenously by patients receiving neutron capture therapy. J Pharmacol Exp Ther 1955, 114 (4), 484-9.
50. Goodwin, J. T.; Farr, L. E.; Sweet, W. H.; Robertson, J. S., Pathological study of eight patients with glioblastoma multiforme treated by neutron-capture therapy using boron 10. Cancer 1955, 8 (3), 601-15.
51. Snyder, H. R.; Reedy, A. J.; Lennarz, W. J., Synthesis of Aromatic Boronic Acids - Aldehydo Boronic Acids and a Boronic Acid Analog of Tyrosine. Journal of the American Chemical Society 1958, 80 (4), 835-838.
52. (a) Papaspyrou, M.; Feinendegen, L. E.; Muller-Gartner, H. W., Preloading with L-tyrosine increases the uptake of boronophenylalanine in mouse melanoma cells. Cancer Res 1994, 54 (24), 6311-4; (b) Belkhou, R.; Abbe, J. C.; Pham, P.; Jasner, N.; Sahel, J.; Dreyfus, H.; Moutaouakkil, M.; Massarelli, R., Uptake and Metabolism of Boronophenylalanine in Human Uveal Melanoma-Cells in Culture - Relevance to Boron Neutron-Capture Therapy of Cancer-Cells. Amino Acids 1995, 8 (2), 217-229.
53. Soloway, A. H., Correlation of drug penetration of brain and chemical structure. Science 1958, 128 (3338), 1572-4.
54. Ichihashi, M.; Nakanishi, T.; Mishima, Y., Specific killing effect of 10B1-para-boronophenylalanine in thermal neutron capture therapy of malignant melanoma: in vitro radiobiological evaluation. J Invest Dermatol 1982, 78 (3), 215-8.
55. Coderre, J. A.; Glass, J. D.; Packer, S.; Micca, P.; Greenberg, D., Experimental boron neutron capture therapy for melanoma: systemic delivery of boron to melanotic and amelanotic melanoma. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society 1990, 3 (6), 310-8.
56. Lipscomb, W. N.; Pitochelli, A. R.; Hawthorne, M. F., Probable Structure of the B10h10-2 Ion. Journal of the American Chemical Society 1959, 81 (21), 5833-5834.
57. Soloway, A. H.; Wright, R. L.; Messer, J. R., Evaluation of Boron Compounds for Use in Neutron Capture Therapy of Brain Tumors .1. Animal Investigations. Journal of Pharmacology and Experimental Therapeutics 1961, 134 (1), 117-&.
58. Soloway, A. H.; Hatanaka, H.; Davis, M. A., Penetration of Brain and Brain Tumor .7. Tumor-Binding Sulfhydryl Boron Compounds. Journal of Medicinal Chemistry 1967, 10 (4), 714-&.
59. Olsson, P.; Gedda, L.; Goike, H.; Liu, L.; Collins, V. P.; Ponten, J.; Carlsson, J., Uptake of a boronated epidermal growth factor-dextran conjugate in CHO xenografts with and without human EGF-receptor expression. Anti-cancer drug design 1998, 13 (4), 279-89.
60. Tjarks, W., The use of boron clusters in the rational design of boronated nucleosides for neutron capture therapy of cancer. J Organomet Chem 2000, 614, 37-47.
61. El-Zaria, M. E.; Dorfler, U.; Gabel, D., Synthesis of (aminoalkylamine)-N-aminoalkyl)azanonaborane(11) derivatives for boron neutron capture therapy. Journal of Medicinal Chemistry 2002, 45 (26), 5817-5819.
62. Tietze, L. F.; Griesbach, U.; Schuberth, I.; Bothe, U.; Marra, A.; Dondoni, A., Novel carboranyl C-glycosides for the treatment of cancer by boron neutron capture therapy. Chem-Eur J 2003, 9 (6), 1296-1302.
63. Ivanov, D.; Bachovchin, W. W.; Redfield, A. G., Boron-11 pure quadrupole resonance investigation of peptide boronic acid inhibitors bound to alpha-lytic protease. Biochemistry 2002, 41 (5), 1587-1590.
64. Olejniczak, A. B.; Koziolkiewicz, M.; Lesnikowski, Z. J., Carboranyl oligonucleotides: 4. Synthesis and physicochemical studies of oligonucleotides containing 2 '-O-(o-carboran-1-yl)methyl group. Antisense Nucleic A 2002, 12 (2), 79-94.
65. Sivaev, I. B.; Bregadze, V. V., Polyhedral Boranes for Medical Applications: Current Status and Perspectives. Eur J Inorg Chem 2009, (11), 1433-1450.
66. Kabalka, G. W.; Yao, M. L., Synthesis of a novel boronated 1-aminocyclobutanecarboxylic acid as a potential boron neutron capture therapy agent. Appl Organomet Chem 2003, 17 (6-7), 398-402.
67. Carlsson, J.; Kullberg, E. B.; Capala, J.; Sjoberg, S.; Edwards, K.; Gedda, L., Ligand liposomes and boron neutron capture therapy. J Neuro-Oncol 2003, 62 (1), 47-59.
68. Sumitani, S.; Oishi, M.; Nagasaki, Y., Carborane confined nanoparticles for boron neutron capture therapy: Improved stability, blood circulation time and tumor accumulation. React Funct Polym 2011, 71 (7), 684-693.
69. Gabel, D.; Foster, S.; Fairchild, R. G., The Monte-Carlo Simulation of the Biological Effect of the B-10(N,Alpha)Li-7 Reaction in Cells and Tissue and Its Implication for Boron Neutron-Capture Therapy. Radiation Research 1987, 111 (1), 14-25.
70. (a) Swift, G., Directions for Environmentally Biodegradable Polymer Research. Accounts Chem Res 1993, 26 (3), 105-110; (b) Itavaara, M.; Karjomaa, S.; Selin, J. F., Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 2002, 46 (6), 879-885.
71. Drumright, R. E.; Gruber, P. R.; Henton, D. E., Polylactic acid technology. Adv Mater 2000, 12 (23), 1841-1846.
72. Degee, P.; Dubois, P.; Jerome, R.; Jacobsen, S.; Fritz, H. G., New catalysis for fast bulk ring-opening polymerization of lactide monomers. Macromol Symp 1999, 144, 289-302.
73. (a) Ryner, M.; Stridsberg, K.; Albertsson, A. C.; von Schenck, H.; Svensson, M., Mechanism of ring-opening polymerization of 1,5-dioxepan-2-one and L-lactide with stannous 2-ethylhexanoate. A theoretical study. Macromolecules 2001, 34 (12), 3877-3881; (b) von Schenck, H.; Ryner, M.; Albertsson, A. C.; Svensson, M., Ring-opening polymerization of lactones and lactides with Sn(IV) and Al(III) initiators. Macromolecules 2002, 35 (5), 1556-1562.
74. Albertsson, A. C.; Varma, I. K., Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003, 4 (6), 1466-1486.
75. Izunobi, J. U.; Higginbotham, C. L., Polymer Molecular Weight Analysis by H-1 NMR Spectroscopy. J Chem Educ 2011, 88 (8), 1098-1104.
76. (a) Grund, S.; Bauer, M.; Fischer, D., Polymers in Drug Delivery-State of the Art and Future Trends. Adv Eng Mater 2011, 13 (3), B61-B87; (b) Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S., Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew Chem Int Edit 2010, 49 (36), 6288-6308; (c) Pasut, G.; Veronese, F. M., Polymer-drug conjugation, recent achievements and general strategies. Prog Polym Sci 2007, 32 (8-9), 933-961; (d) Allen, T. M.; Cullis, P. R., Drug delivery systems: Entering the mainstream. Science 2004, 303 (5665), 1818-1822; (e) Vicent, M. J.; Ringsdorf, H.; Duncan, R., Polymer therapeutics: Clinical applications and challenges for development Preface. Adv Drug Deliver Rev 2009, 61 (13), 1117-1120; (f) Pasut, G.; Veronese, F. M., PEG conjugates in clinical development or use as anticancer agents: An overview. Adv Drug Deliver Rev 2009, 61 (13), 1177-1188.
77. (a) Hoogenboom, R., Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications. Angew Chem Int Edit 2009, 48 (43), 7978-7994; (b) Barz, M.; Luxenhofer, R.; Zentel, R.; Vicent, M. J., Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure-property relationships to better defined therapeutics. Polym Chem-Uk 2011, 2 (9), 1900-1918.
78. Tomalia, D. A.; Sheetz, D. P., Homopolymerization of 2-Alkyl- and 2-Aryl-2-Oxazolines. J Polym Sci A1 1966, 4 (9pa1), 2253-&.
79. (a) Kobayashi, S., Ethylenimine Polymers. Prog Polym Sci 1990, 15 (5), 751-823; (b) Aoi, K.; Okada, M., Polymerization of oxazolines. Prog Polym Sci 1996, 21 (1), 151-208.
80. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65 (1-2), 55-63.