研究生: |
茱蒂 Judy M. Obliosca |
---|---|
論文名稱: |
金/銀奈米結構合成與光學性質探討應用於生物螢光鑑定與標記 Synthesis and Optical Properties of Gold and Silver Nanostructures for Biological Fluorescence Assessment and Labeling Applications |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: |
Tseng, Fan-Gang
Wang, Pen-Cheng Yang, Chung-Shi Chang, Feng-Chih Li, Lain-Jong |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | Fluorescence quenching 、gold nanoparticles 、surface functionalization 、microarray 、DNA 、galvanic replacement reaction 、fluorescence 、core-shell 、synthesis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The development of nanomaterials for biological and optical detections, imaging, bioengineering, DNA sequencing, gene therapy and electrochemical sensing applications has been an active and interesting field of research in recent years. Among the metals, gold (Au) and silver (Ag) nanoparticles (NPs) have been of great interest because of their ease of preparation, better homogeneity, high compatibility with biomolecules, intense absorption bands in the visible region and significant contributions to surface-enhanced Raman spectroscopy (SERS) as active substrates. Many studies utilize metal nanoparticles to tune the luminescence intensity of fluorophores. The enhancement or quenching of a dye’s fluorescence intensity is strongly dependent on the spatial separation of the dye from the nanoparticle surface.
In the first part of the study, the distance-dependent fluorescence behavior of Au–DNA–Cy3 conjugates in solution and array platforms is presented. This was carried out by equilibrating the phosphine-stabilized AuNPs of 10-nm size with the designed rigid spacer ds-DNA consisting of thiol-modified target and Cy3-labelled complementary probe of different lengths (5-20 nm). The Cy3-labelled products were immobilized onto MPTMS (3-mercaptopropyltrimethoxysilane)-modified glass substrates and then excited with a 532-nm laser source. Quenching efficiency of AuNPs with increasing Au-to-dye distance was assessed using ligand exchange of the thiolated oligonucleotide by 2-mercaptoethanol (ME) to obtain free DNA–Cy3 probe, thus eliminating nanoparticle effect on the dye’s luminescence intensity. Effective exchange, revealed by UV-vis absorption and fluorescence profiles, was achieved in a few minutes. Quenching effect on Au–DNA–Cy3 array, consistent with the result in solution phase for the conjugates with up to 10-nm Au-to-Cy3 separation distance, was observed.
This study also aims on tuning the electronic and optical properties of Au and Ag nanostructures by varying their sizes and shapes and by combining them with another nanomaterial from which significant cooperative effects can develop. In the second part of this work, a simple route for synthesizing small-sized Ag/Au core-shell (or simply Ag/Au) on multi-walled carbon nanotube (MWCNT) surfaces via galvanic replacement of AgNPs is presented. The Raman response of MWCNT decorated with Ag/Au was investigated under surface-enhanced Raman scattering (SERS). A relatively weak Raman signal enhancement of the tube was observed due to the large interparticle distance between neighboring small-sized nanostructures. Ag/Au give better enhancing capability than the starting Ag because of the synergistic effect between the localized electric field of the Ag core and the Au shell separated with a hollow space formed during the galvanic replacement reaction. Furthermore, the Ag/Au were removed from the CNT surfaces via sonication with 1-octanethiol (OT), releasing unreplaced AgNPs and Au nanobowls (AuNBs) of 1.3 and 7.6 nm in mean diameter sizes, respectively. The luminescent property of these fine-sized nanocomposites (Au/Ag NCs) was investigated. Interestingly, the separated Au/Ag NCs (i.e., the mixture of AuNBs and unreplaced AgNPs) exhibit significant fluorescence behavior that may be useful for single-molecule probing and detection. The synthetic approach of this study provides the preparation of smallest dimension of AuNBs so far simply achieved by wet chemical process using MWCNTs as templates.
References
[1] K. Sato, K. Hosokawa, M. Maeda, J Am Chem Soc 125 (2003) 8102-8103.
[2] R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Science 277 (1997) 1078-1081.
[3] W. Lian, S.A. Litherland, H. Badrane, W.H. Tan, D.H. Wu, H.V. Baker, P.A. Gulig, D.V. Lim, S.G. Jin, Anal Biochem 334 (2004) 135-144.
[4] B. Foultier, L. Moreno-Hagelsieb, D. Flandre, J. Remacle, IEE Proc Nanobiotechnol 152 (2005) 3-12.
[5] K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J.R. Lakowicz, C.D. Geddes, Curr Opin Biotech 16 (2005) 55-62.
[6] J.R. Lakowicz, Anal Biochem 298 (2001) 1-24.
[7] S. Kalele, A.C. Deshpande, S.B. Singh, S.K. Kulkarni, B Mater Sci 31 (2008) 541-544.
[8] J. Gersten, A. Nitzan, J Chem Phys 75 (1981) 1139-1152.
[9] D.A. Weitz, S. Garoff, J.I. Gersten, A. Nitzan, J Chem Phys 78 (1983) 5324-5338.
[10] A.M. Glass, A. Wokaun, J.P. Heritage, J.G. Bergman, P.F. Liao, D.H. Olson, Phys Rev B 24 (1981) 4906-4909.
[11] T. Nakamura, S. Hayashi, Jpn J Appl Phys 1 44 (2005) 6833-6837.
[12] J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, V. Sandoghdar, Nano Lett 7 (2007) 685-689.
[13] R. Chhabra, J. Sharma, H.N. Wang, S.L. Zou, S. Lin, H. Yan, S. Lindsay, Y. Liu, Nanotechnology 20 (2009) -.
[14] E. Dulkeith, A.C. Morteani, T. Niedereichholz, T.A. Klar, J. Feldmann, S.A. Levi, F.C.J.M. van Veggel, D.N. Reinhoudt, M. Moller, D.I. Gittins, Phys Rev Lett 89 (2002) -.
[15] C.K. Kim, R.R. Kalluru, J.P. Singh, A. Fortner, J. Griffin, G.K. Darbha, P.C. Ray, Nanotechnology 17 (2006) 3085-3093.
[16] C.S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N.O. Reich, G.F. Strouse, J Am Chem Soc 127 (2005) 3115-3119.
[17] G. Cnossen, K.E. Drabe, D.A. Wiersma, J Chem Phys 98 (1993) 5276-5280.
[18] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem Rev 105 (2005) 1025-1102.
[19] Y. Cao, R. Jin, C.A. Mirkin, J Am Chem Soc 123 (2001) 7961-7962.
[20] S. Nie, S.R. Emory, Science 275 (1997) 1102-1106.
[21] S. Pande, S.K. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda, T. Pal, J Phys Chem C 111 (2007) 10806-10813.
[22] T. Ming, L. Zhao, Z. Yang, H.J. Chen, L.D. Sun, J.F. Wang, C.H. Yan, Nano Lett 9 (2009) 3896-3903.
[23] C.H. Liang, C.C. Wang, Y.C. Lin, C.H. Chen, C.H. Wong, C.Y. Wu, Anal Chem 81 (2009) 7750-7756.
[24] N. Sahiner, S. Butun, P. Ilgin, Colloid Surface A 386 (2011) 16-24.
[25] W.T. Wu, T. Zhou, A. Berliner, P. Banerjee, S.Q. Zhou, Chem Mater 22 (2010) 1966-1976.
[26] M. Banerjee, S. Sharma, A. Chattopadhyay, S.S. Ghosh, Nanoscale 3 (2011) 5120-5125.
[27] Y.G. Sun, B.T. Mayers, Y.N. Xia, Nano Lett 2 (2002) 481-485.
[28] M.L. Terranova, V. Sessa, M. Rossi, Chem Vapor Depos 12 (2006) 315-325.
[29] C.A.J. Lin, C.H. Lee, J.T. Hsieh, H.H. Wang, J.K. Li, J.L. Shen, W.H. Chan, H.I. Yeh, W.H. Chang, J Med Biol Eng 29 (2009) 276-283.
[30] J. Zheng, C.W. Zhang, R.M. Dickson, Phys Rev Lett 93 (2004)
[31] C.C. Huang, Z. Yang, K.H. Lee, H.T. Chang, Angew Chem Int Edit 46 (2007) 6824-6828.
[32] J.R. Lakowicz, Principles of fluorescence spectroscopy, 3rd Ed., Springer, 2006.
[33] R.B. Mujumdar, L.A. Ernst, S.R. Mujumdar, C.J. Lewis, A.S. Waggoner, Bioconjugate Chem 4 (1993) 105-111.
[34] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J Phys Chem B 107 (2003) 668-677.
[35] Y.C. Cao, R. Jin, C.A. Mirkin, Science 297 (2002) 1536-1540.
[36] P.C. Das, A. Puri, Phys Rev B 65 (2002)
[37] C.D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J.Y. Fang, J.R. Lakowicz, J Phys Chem A 107 (2003) 3443-3449.
[38] C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, J.R. Lakowicz, Comb Chem High T Scr 6 (2003) 109-117.
[39] J.R. Lakowicz, Y.B. Shen, S. D'Auria, J. Malicka, J.Y. Fang, Z. Gryczynski, I. Gryczynski, Anal Biochem 301 (2002) 261-277.
[40] J.R. Lakowicz, B. Shen, Z. Gryczynski, S. D'Auria, I. Gryczynski, Biochem Bioph Res Co 286 (2001) 875-879.
[41] I. Gryczynski, J. Malicka, Y.B. Shen, Z. Gryczynski, J.R. Lakowicz, J Phys Chem B 106 (2002) 2191-2195.
[42] W.L. Barnes, J Mod Optic 45 (1998) 661-699.
[43] O.G. Tovmachenko, C. Graf, D.J. van den Heuvel, A. van Blaaderen, H.C. Gerritsen, Adv Mater 18 (2006) 91-95.
[44] R. Levy, U. Shaheen, Y. Cesbron, V. See, Nano Rev 1 (2010)
[45] L. Tong, Q.S. Wei, A. Wei, J.X. Cheng, Photochemistry and Photobiology 85 (2009) 21-32.
[46] W. Cai, T. Gao, H. Hong, J. Sun Nanotechnology, Science and Applications 1 (2008) 17-32.
[47] E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A.M. Javier, W.J. Parak, Nano Lett 5 (2005) 585-589.
[48] L. Dykman, N. Khlebtsov, Chem Soc Rev 41 (2012) 2256-2282.
[49] C.A.J. Lin, T.Y. Yang, C.H. Lee, S.H. Huang, R.A. Sperling, M. Zanella, J.K. Li, J.L. Shen, H.H. Wang, H.I. Yeh, W.J. Parak, W.H. Chang, Acs Nano 3 (2009) 395-401.
[50] N. Schaeffer, B. Tan, C. Dickinson, M.J. Rosseinsky, A. Laromaine, D.W. McComb, M.M. Stevens, Y.Q. Wang, L. Petit, C. Barentin, D.G. Spiller, A.I. Cooper, R. Levy, Chem Commun (2008) 3986-3988.
[51] D. Lee, R.L. Donkers, G.L. Wang, A.S. Harper, R.W. Murray, J Am Chem Soc 126 (2004) 6193-6199.
[52] P. Apell, R. Monreal, S. Lundqvist, Phys Scripta 38 (1988) 174-179.
[53] J.P. Wilcoxon, P.P. Provencio, J Am Chem Soc 126 (2004) 6402-6408.
[54] M.A. Uppal, M.B. Ewing, I.P. Parkin, Eur J Inorg Chem (2011) 4534-4544.
[55] C.M. Gonzalez, Y. Liu, J.C. Scaiano, J Phys Chem C 113 (2009) 11861-11867.
[56] M. Treguer, C. de Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni, R. de Keyzer, J Phys Chem B 102 (1998) 4310-4321.
[57] Y.G. Sun, Y.N. Xia, J Am Chem Soc 126 (2004) 3892-3901.
[58] Y. Lu, G.L. Liu, J. Kim, Y.X. Mejia, L.P. Lee, Nano Lett 5 (2005) 119-124.
[59] M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Forch, U. Jonas, M. Kreiter, Small 5 (2009) 2105-2110.
[60] H. Jiang, J. Markowski, J. Sabarinathan, Opt Express 17 (2009) 21802-21807.
[61] B.M. Ross, L.P. Lee, Nanotechnology 19 (2008) 275201.
[62] S. Link, M.A. El-Sayed, J Phys Chem B 103 (1999) 4212-4217.
[63] R. Bukasov, T.A. Ali, P. Nordlander, J.S. Shumaker-Parry, Acs Nano 4 (2010) 6639-6650.
[64] H.Y. Hsieh, P.C. Wang, C.L. Wu, C.W. Huang, C.C. Chieng, F.G. Tseng, Anal Chem 81 (2009) 7908-7916.
[65] S.K. Ghosh, A. Pal, S. Kundu, S. Nath, T. Pal, Chem Phys Lett 395 (2004) 366-372.
[66] T. Pellegrino, R.A. Sperling, A.P. Alivisatos, W.J. Parak, J Biomed Biotechnol (2007) -.
[67] M.J. Hostetler, A.C. Templeton, R.W. Murray, Langmuir 15 (1999) 3782-3789.
[68] R.Y. Zhang, L. Amlani, J. Baker, J. Tresek, R.K. Tsui, Nano Lett 3 (2003) 731-735.
[69] H.J. Jiang, L.B. Zhu, K.S. Moon, C.P. Wong, Carbon 45 (2007) 655-661.
[70] J. Turkevich, P.C. Stevenson, J. Hillier, Discuss Faraday Soc (1951) 55-75.
[71] L.M. Demers, C.A. Mirkin, R.C. Mucic, R.A. Reynolds, R.L. Letsinger, R. Elghanian, G. Viswanadham, Anal Chem 72 (2000) 5535-5541.
[72] D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhmi, D. Vuillaume, Small 1 (2005) 725-729.
[73] G. Ledung, M. Bergkvist, A.P. Quist, U. Gelius, J. Carlsson, S. Oscarsson, Langmuir 17 (2001) 6056-6058.
[74] E. Pavlovic, A.P. Quist, U. Gelius, S. Oscarsson, J Colloid Interf Sci 254 (2002) 200-203.
[75] J.M. Obliosca, P.C. Wang, F.G. Tseng, J Colloid Interface Sci 371 (2012) 34-41.
[76] Y.H. Sun, K. Liu, J. Miao, Z.Y. Wang, B.Z. Tian, L.N. Zhang, Q.Q. Li, S.S. Fan, K.L. Jiang, Nano Lett 10 (2010) 1747-1753.
[77] P. Dawson, J.A. Duenas, M.G. Boyle, M.D. Doherty, S.E.J. Bell, A.M. Kern, O.J.F. Martin, A.S. Teh, K.B.K. Teo, W.I. Milne, Nano Lett 11 (2011) 365-371.
[78] Y. Wang, M. Li, H. Jia, W. Song, X. Han, J. Zhang, B. Yang, W. Xu, B. Zhao, Spectrochim Acta A Mol Biomol Spectrosc 64 (2006) 101-105.
[79] P. Guyot-Sionnest, M.Z. Liu, J Phys Chem B 108 (2004) 5882-5888.