簡易檢索 / 詳目顯示

研究生: 蔡英傑
Ying-Chieh Tsai
論文名稱: 靈敏度增強型光學外差式偏光儀之研發及其應用於對掌性物質的旋光角度量測
A sensitivity-enhanced optical heterodyne polarimeter for the measurement of optical rotation angle of chiral media
指導教授: 吳見明
Chien-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 57
中文關鍵詞: 旋光對掌性偏光儀外差干涉
外文關鍵詞: optical rotation, chiral, polarimeter, heterodyne interferometry
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此次的研究中,我們發展了一種新型的光學外差式偏光儀,以用來量測對掌性物質溶液的濃度。而為了要減少量測中的環境對訊號所產生的干擾,TE和TM光波的共光程干涉技術被運用在我們的系統架構中,並且擺放一個相位可調式波片在樣品後面,利用它去增強樣品造成偏振態旋轉所引起的相位訊號,而當相位可調式波片的相位延遲量接近180度時,這個增強的能力可以超過100倍。在實驗中,利用我們所發展出來新的靈敏度增強型之偏光儀去進行葡萄糖溶液旋光量測,當調整相位可調式波片的相位延遲量為177.307度,且考慮相位可調式波片快軸軸向的誤差時,其角度放大倍率範圍為-57.853 ~ -60.091,經過計算得到的角度解析能力範圍為6.16×10-4 ~ 6.40×10-4度,其對應的濃度解析能力範圍為13.48 ~ 14.00 mg/dl。我們預期系統在經過改善後,此新型的偏光儀未來將可被運用於糖尿病患非侵入式的血糖濃度監測。


    A novel heterodyne polarimeter is designed to measure the concentration of chiral media. Optical common-path for the interference of the TE and TM waves, after a polarizer, is set up in our system to reduce noises from the environment. A phase-variable waveplate is placed behind the sample to enhance the phase signal change of rotation of polarization introduced by the sample itself. This enhancement can be excess two orders in amplitude when the retardation of the phase-variable plate is set close to 180 degree. With this polarimeter, the enhancement is -57.853 ~ -60.091 when the phase retardation of the phase-variable waveplate is 177.307 degree and considering the error of orientation angle. After calculating, the measurement of optical rotation angle of glucose solution with high resolution of 6.16×10-4 ~ 6.40×10-4 degree experimentally can be achieved, corresponding to concentration resolution of 13.48 ~ 14.00 mg/dl. We expect that, by further improvement, it can be applied in noninvasive blood glucose concentration monitoring for diabetics in the future.

    目 錄 中文摘要.........................Ⅰ 英文摘要.........................Ⅱ 誌謝...........................Ⅲ 目錄...........................Ⅳ 圖目錄..........................Ⅵ 表目錄..........................Ⅸ 第一章 緒論 .......................1 1.1 研究動機......................1 1.2 文獻回顧......................3 1.3 研究方法..................... 12 第二章 光學活性與共光程外差干涉儀............14 2.1 光學活性 .....................14 2.1.1 前言 .....................14 2.1.2 形成光學活性的要件...............15 2.1.3 光學對旋光現象的解釋..............16 2.2 共光程外差干涉儀 .................18 2.2.1 前言......................18 2.2.2 原理......................18 2.2.3 基本架構....................20 第三章 實驗架構與理論模擬................22 3.1 實驗架構 .....................22 3.2 理論計算及模擬 ..................25 3.2.1 瓊斯矩陣....................25 3.2.2 模擬......................28 3.3 小結 .......................36 第四章 結果與討論....................38 4.1 前言 .......................38 4.2 相位延遲波片之架設與使用 .............38 4.3 區段上訊號跳動之探討 ...............41 4.4 旋光角度量測 ...................43 4.5 實驗結果討論 ...................47 第五章 結論.......................52 參考文獻.........................54

    參考文獻

    [1]行政院衛生署衛生統計資訊,”台灣地區縣市死因統計結果”,民國91年。(http://www.doh.gov.tw/statistic/index.htm)
    [2] R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview”, J. Biomed. Opt., 5(1), 5-16, 2000.
    [3] The Diabetes Control & Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes”, The New England Journal of Medicine, 329, 977-986, 1993.
    [4] J. Tenhunen, H. Kopola, and R. Myllylä, “Noninvasive glucose measurement based on selective near infrared absorption; requirements on instrumentation and spectral range”, Measurement, 24, 173-177, 1998.
    [5] J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy”, Clin. Chem., 45, 1621-1627, 1999.
    [6] G. Yoon, A. K. Amerov, K. J. Jeon, and Y. J. Kim, “Determination of glucose concentration in a scattering medium based on selected wavelengths by use of an overtone absorption band”, Appl. Opt., 41, 1469-1475, 2002.
    [7] P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, ”Determination of urea, glucose, and phosphate in dialysate with Fourier transform infrared spectroscopy”, Spectrochimica Acta Part A, 60, 899-905, 2004.
    [8] K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy”, Anal. Chem. Acta., 371, 255-267, 1998.
    [9] J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared”, Opt. Lett., 19, 2062-2064, 1994.
    [10] J. T. Bruulsema, J. E. Hayward, T. J. Farrell, and M. S. Patterson, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient”, Opt. Lett., 22, 190-192, 1997.
    [11] L. Heinemann and G. Schmelzeisen, “Noninvasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors”, Diabetologia, 41, 848-854, 1998.
    [12]王孟亮,”拉曼光譜學及其在生化上的應用”,科學月刊,第167期,1983。(http://library.ccut.edu.tw/sct/content/1983/00110167/0002.htm)
    [13] X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples”, Vibra. Spect., 14, 199-205, 1997.
    [14] A. M. K. Enejder, T. W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy”, Opt. Lett., 27, 2004-2006,2002.
    [15] A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy”, Appl. Opt., 38, 2916-2926,1999.
    [16] A. J. Berger, I. Itzkan, and M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy”, Spectrochimica Acta Part A, 53, 287-292, 1997.
    [17] R. O. Esenaliev, K. V. Larin, and I. V. Larina, “Noninvasive monitoring of glucose concentration with optical coherence tomography”, Opt. Lett., 26, 992-994, 2001.
    [18] K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects”, Diabetes Care, 25, 2263-2267, 2002.
    [19] K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pliot study”, Phys. Med. Biol., 48, 1371-1390, 2003.
    [20] R. J. McNichols, B. D. Cameron, and G. L. Coté, “Development of a noninvasive polarimetric glucose sensor”, IEEE-LEOS Newsletter, 12, 30-31, 1998.
    [21] G. L. Coté, M. D. Fox, and R. B. Northrop, “Laser polarimetry for glucose monitoring”, Ann. Inter. Conf. of the IEEE Eng. in Med. and Bio. Soc., 12, 476-477, 1990.
    [22]行政院衛生署國民健康局中老年保健網,” 台灣地區高血糖、高血脂、高血壓盛行率調查期末報告”,2003。(http://163.29.76.18/study.htm)
    [23] A. Arnaud, F. Silveira, E. M. Frins, A. Dubra, C. D. Perciante, and J. A. Ferrari, “Precision synchronous polarimeter with linear response for the measurement of small rotation angles”, Appl. Opt., 39, 2601-2604, 2000.
    [24] B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotation”, Diabetes Care, 5, 254-258, 1982.
    [25] B. D. Cameron and G. L. Coté, “Noninvasive glucose sensing utilizing a digital closed- loop polarimetric approach”, IEEE Trans. Biomed. Eng., 44, 1221-1227, 1997.
    [26] W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens”, Diabetes Care, 5, 259-265, 1982.
    [27] M. Yokota, Y. Sato, I. Yamaguchi, T. Kenmochi, T. Yoshino, “A compact polarimetric glucose sensor using a high-performance fibre-optic Faraday rotator”, Meas. Sci. Technol., 15, 143-147, 2004.
    [28] C. Chou, Y. C. Huang, C. M. Feng, and M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid”, Jpn. J. Appl. Phys., 36, 356-359, 1997.
    [29] C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with optical heterodyne polarimeter”, Appl. Opt., 37, 3553-3557, 1998.
    [30] G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique”, IEEE Trans. Biomed. Eng., 39, 752-756, 1992.
    [31] T. Mitsui and K. Sakurai, “Precise measurement of the refractive index and optical rotatory power of a suspension by a delayed optical heterodyne technique”, Appl. Opt., 35, 2253-2258, 1996.
    [32] C. Chou, Y. C. Huang, and M. Chang, “Precise optical activity measurement of quartz plate by using a true phase-sensitive technique”, Appl. Opt., 36, 3604-3609, 1997.
    [33] C. M. Feng, Y. C. Huang, J. G. Chang, M. Chang, and C.Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement”, Opt. Comm., 141, 314-321, 1997.
    [34] J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter”, Meas. Sci. Technol., 14, 55-58, 2003.
    [35] J. Y. Lin and D. C. Su, “A new method for measuring the chiral parameter and the average refractive index of a chiral liquid”, Opt. Comm., 218, 317-323, 2003.
    [36] J. Y. Lin, K. H Chen, and D. C. Su, “Improved method for measuring small optical rotation angle of chiral medium”, Opt. Comm., 238, 113-118, 2004.
    [37] D. J. Caldwell and H. Eyring, The Theory of Optical Activity, ch. 1, Wiley-Interscience, New York, 1971.
    [38] Eugene Hecht, Optics, ch. 8, Addison-Wesley, Massachusetts, 1998.
    [39] T. W. King and G. L. Coté, “Closed loop polarimetric glucose sensing using the Pockels effect”, Ann. Inter. Conf. Of IEEE EMBS, 1, 161-162, 1992.
    [40] M. P. Silverman, N. Ritchie, G. M. Cushman, and B. Fisher, “ Experimental configurations using optical phase modulation to measure chiral asymmetries in light specularly reflected from a naturally gyrotropic medium”, J. Opt. Soc. Am. A, 5, 1852-1862, 1988.
    [41]趙凱華、鍾錫華,光學,第七章,儒林圖書有限公司,台北,1997。
    [42] P. Hariharan, “Basics of interferometry”, Academic Press, INC, 67-77、189, 1991.
    [43] C. Chou, J. C. Shyu, Y. C. Huang, and C. K. Yuan, “Common-path optical heterodyne profilometer: a configuration”, Appl. Opt., 37, 4137-4142, 1998.
    [44] C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface okasmon resonance and heterodyne interferometry”, Sens. Actu, B, 92, 133-136, 2003.
    [45] H. Jiang and C. Y. Yin, “Sensitivity enhanced roll angle measurement”, Opt. Eng., 39, 516-519, 2000.
    [46] W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating”, Appl. Opt., 9, 649-652, 1970.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE