研究生: |
唐寧慧 Tang, Ning-Hui |
---|---|
論文名稱: |
質傳速率基礎模型在焦爐氣水洗氨製程模擬的應用 |
指導教授: | 汪上曉 |
口試委員: |
汪上曉
周正晃 王銘忠 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 質傳速率基礎模型 |
外文關鍵詞: | RATE-BASED MODEL |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去精餾、吸收等分離製程常應用平衡階段模型(equilibrium stage model)模擬。然而平衡模型未考慮分離過程吸收所伴隨的質傳,如果吸收過程中要把氣體濃度降到很低(ppm級),此時質傳推動力極低,使得平衡階段模型與實際操作一直存在相當大的差距,近年有不少研究者建立質傳速率模型(mass transfer rate-based model) ,例如ASPEN TECH 公司的ASPEN Plus RateFracTM模型,證明比傳統的平衡階段模型更適用於吸收過程的穩態模擬 。
中鋼的COG氣體經過冷卻後進入兩套不同的吸收塔,兩套設備的填充物不同,高度也不同。經過吸收後的COG氣體有不同的氨與硫化氫濃度變化,傳統的平衡階段模型只能用板效率描述兩套系統的差異,唯有用rate-based模型考慮兩相之間的質傳與熱傳問題,說明產量、設備大小的影響,才能真正描述兩個系統的操作情形。
我們以文獻數據驗證Aspen Plus 提供的熱力學(模型)、並藉由Aspen Plus建立rate-based吸收塔模式。Rate-based中的mass-transfer coefficient model、liquid holdup能因填充物不同做調整,reaction factor則可以對各反應的質傳控制貢獻做出調整,使rate-based model能符合不同填充物下的吸收塔操作。
系統的熱力模型,以系統中NH3-H2S-H2O、NH3- CO2 -H2O實驗值與模擬值比較,驗證其準確度在操作範圍內。以rate-based進行吸收塔的模擬,證明rate-based模型遠優於平衡板模型,而且能模擬預測flexipac與expanded metal兩種填充物的吸收塔操作結果,NH3/H2S/CO2的移除總量與現場十分吻合,出口COG中NH3/H2S/CO2的濃度也在合理範圍之內。
研究另探討Stripping water的流量與pH值對COG被吸收後氨濃度的變化。Waste water/ Coal water的pH流量控制是另一影響NH3出口濃度關鍵變因。發現NH3出口濃度受液相體積影響,但不太受液膜反應條件影響,顯示NH3反應速度較H2S反應慢,相當部分反應在液相進行。因此加上填充物選擇及塔內流場控制會對NH3出口濃度有影響。H2S出口濃度受液相體積及液膜反應條件影響,顯示H2S反應速度較NH3快,相當部分反應在液膜進行。所完成的rate-based模型能詳細描述吸收機制,符合實際操作,能進一步用於填充塔的設計。
1. Bubble Tray Design Manual: Prediction of Fractionation Efficiency, AIChE, New York (1958).
2. Bravo, J. L.; Fair, J. R., Generalized correlation for mass transfer in packed distillation columns. Ind. Eng. Chem. Process Des. Dev. 1982, 21, 162.
3. Bennett, D. L.; Agrawal, R.; Cook, P. J., New Pressure Drop Correlation for Sieve Tray Distillation Columns. AIChE J. 1983, 29, 434.
4. Bravo, J. L.; Rocha, J. A.; Fair, J. R., Mass transfer in gauze packings. Hydro- carbon Processing 1985, 64 (1), 91.
5. Bravo, J. L.; Patwardhan, A. A.; Edgar, T. F., Influence of effective interfacial areas in the operation and control of packed distillation columns. Industrial & Engineering Chemistry Research 1992, 31 (2), 604-608.
6. Billet, R.; Schultes, M., Predicting mass transfer in packed columns. Chem. Eng.Technol. 1993, 16, 1.
7. B.Rumpf.; J.Xia.; ., G. M., An experimental investigation of the solubility of carbon dioxide in aqueous solution containing sodium nitrate or ammonium nitrate at temperatures from 313K to 433K and pressures up to 10MPa. J,Chem Thermodynamics 1997, 1101-1111.
8. B. Rumpf, A.; Kamps., P.-S.; Sing., R.; Maurer., G., Simultaneous solubility of ammonia and hydrogen sulfide in water at temperatures from 313K to 393K: Fluid Phase Equilibria. 1999, 158-160, 923-932.
9. Chan, H.; Fair, J. R., Prediction of point efficiencies on sieve trays. Ind. Eng. Chem. Process Des. Dev. 1984, 23, 814.
10.Chen, C. C.; Britt, H. I.; Boston, J. F.; Evans, L. B., Local composition model for excess gibbs energy of electrolyte systems.1.single solvent, single completely dissociated electrolyte systems. Aiche J. 1982, 28 (4), 588-596.
11.Chen, C. C., A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE 1986, 32 (3), 444-454.
12.Chen, G. X.; Chuang, K. T., Prediction of efficiencies for sieve trays in distillation. Ind. Eng. Chem. Process Des. Dev. 1993, 32, 701
13Freguia, S.; Rochelle, G. T., Modeling of CO2 capture by aqueous monoethanolamine. Aiche J. 2003, 49 (7), 1676-1686.
14.Hughmark, G. A., Model for vapor phase and liquid phase mass transfer on distillation trays. AIChE Journal 1971, 17, 1295.
15.Gerster, J. A.; Hill, A. B.; Hochgraf, N. N.; Robinson, D. G., Tray efficiencies in distillation columns. AIChE Journal 1958, New York
16.Hanley, B.; Chen, C. C., Useful mass transfer correlations for packed towers. AIChE Journal 2010.
17.Jassim, M. S.; Rochelle, G. T., Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine. Industrial & Engineering Chemistry Research 2006, 45 (8), 2465-2472.
18.Kurz., F.; B.R, R.; Sing, G.; Maurer., G., Vapor-liquid-solid equilibria in the system NH3-CO2-H2O from around 310 to 470K. New experimental data and modeling: Fluid Phase Equilibria 1995, 104, 261-275.
19Lawal, A.; Wang, M.; Stephenson, P.; Yeung, H., Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants. Fuel 2009, 88 (12), 2455-2462.
20.Mathias, P.; Mendez, M., Simulation of Absorption & Distillation Using 2nd Generation Rate-Based Distillation. aspenONE Process Engineering Webinar 2008.
21.Onda, K.; Takeuchi, H.; Okumoto, Y., Mass transfer coefficients between gas and liquid phased in packed columns. J. Chem. Eng. Jap. 1968, 1, 56.
22.Pinsent, B. R. W.; Pearson, L.; Roughton, F. J. W., The kinetics of combination of carbon dioxide with hydroxide ions. Transactions of the Faraday Society 1956, 52 (11), 1512-1520.
23.Pacheco, M. A.; Rochelle, G. T., Rate-based modeling of reactive absorption of CO2 and H2S into aqueous methyldiethanolamine. Industrial & Engineering Chemistry Research 1998, 37 (10), 4107-4117.
24 Peng, J. J.; Lextrait, S.; Edgar, T. F.; Eldridge, R. B., A comparison of steady-state equilibrium and rate-based models for packed reactive distillation columns. Ind. Eng. Chem. Res. 2002, 41 (11), 2735-2744.
25 Que, H. L.; Chen, C. C., Thermodynamic Modeling of the NH3-CO2-H2O System with Electrolyte NRTL Model. Ind. Eng. Chem. Res. 2011, 50 (19), 11406-11421.
26.Stichlmair, J., Die Grundlagen des Ga-Flussig-Kontaktapparates Bodenkolonne. Verlag Chemie: Weinkeim 1978.
27.Stichlmair, J.; Bravo, J. L.; Fair, J. R., General Model for Prediction of Pressure Drop and Capacity of Countercurrent Gas/Liquid Packed Columns. Gas Sep. Purif 1989, 3, 19.
28.Scheffe, R. D.; Weiland, R. H., Mass transfer characteristics of valve trays. Ind. Eng. Chem. Process Des. Dev. 1987, 26, 228.
29.Tobiesen, F. A.; F.Svendsen, H.; Juliussen., O., Experimental validation of a rigorous absorber model for CO2 post- combustion capture. AIChE Journal 2007, 53 (4), 846-865.
30.Zhang, Y.; Chen, H.; Chen, C. C.; Plaza, J. M.; Dugas, R.; Rochelle, G. T., Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution. Ind. Eng. Chem. Res. 2009, 48 (20), 9233-9246.
31.Zuiderweg, F. J., Sieve trays-A view of the state of the art. Chem. Eng. Sci. 1982, 37, 1441.