研究生: |
顏誠威 Yen, Chan-Wei |
---|---|
論文名稱: |
利用SPR與ITC探討APMED與DNA之親和力 Investigating the affinity of APMED to DNA using SPR and ITC |
指導教授: |
吳見明
Wu, Chien-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 表面電漿共振 、恆溫卡熱計 、藥物親和力 |
外文關鍵詞: | Surface Plasmon Resonance, Isothermal Titration Calorimetry, drug affinity, λ-DNA |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
APMED是一前導化合物,其結構類似DNA鹼基對,可嵌入DNA的雙股結構達到結合效果,期許發展為DNA的標靶藥物。DNA在不同細胞內,或位於不同的細胞週期,DNA可能具有不同的立體結構。本文選定表面電漿共振儀(SPR)與恆溫卡熱計(ITC)進行實驗,共同對APMED與不同DNA形式之間的親和力進行探討。SPR藉由偵測晶片上DNA與APMED反應的質量變化,推算兩者之間的親和力;ITC利用APMED對DNA進行滴定,偵測滴定過程中微弱的熱焓變化。
本研究首先利用SPR比較APMED在不同DNA長度上的結果差異。利用18bp與30bp進行實驗,在短序列18bp對APMED的結合得到較高的親和力。接著探討晶片的重複固化對於APMED與DNA結合的影響,發現再生後晶片的DNA固化,反應後使得APMED結合的訊號上升,推測再生反應破壞晶片表面的齊整度,降低了不同實驗結果之間的 和 差異,導致最終的親和力趨向一致性。最後希望採用λ-DNA應證上列長度結果,卻發現λ-DNA表面電漿共振晶片上的固化不易,於是採用ITC對λ-DNA進行APMED的相關探討。
將λ-DNA經65℃加熱後形成鏈狀λ-DNA。利用ITC得到18bp、30bp和鏈狀λ-DNA對於APMED的親和力較為接近,環狀λ-DNA所得到的親和力結果比鏈狀λ-DNA小,推測DNA長度對於親和力的影響不如立體結構。於是分析環狀、鏈狀λ-DNA對APMED結合情況的不同,發現環狀λ-DNA在三維空間中的摺疊,可能提供了更多APMED的結合位,但降低了環狀λ-DNA對於APMED的親和力,說明了18bp、30bp和鏈狀λ-DNA,在對於APMED親和力大於環狀λ-DNA的結果。
整理SPR與ITC的結果,藉由本研究中探討多種DNA型式與APMED的親和力結果及相關分析,希望能更幫助了解APMED在DNA上的結合情形,以及未來應用在DNA相關藥物的發展方向。
1. JEAN-BERNARD LE PECQ*, N.-D.-X., CHARLES GOSSE*, AND CLAUDE PAOLETTI*, A New Antitumoral Agent: 9-Hydroxyellipticine. Possibility of a Rational Design of Anticancerous Drugs in the Series of DNA Intercalating Drugs. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974. 71(12): p. 5078-5082.
2. Stacie J. Froelich-Ammon‡, D.A.B., Marcia W. Patchan§, Sarah H. Elsea‡¶, Richard B. Thompson§, and Neil Osheroff‡i**, Increased Drug Affinity as the Mechanistic Basis for Drug Hypersensitivity of a Mutant Type II Topoisomerase*. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 1995. 270(47): p. 28018-28021.
3. D’Orazio*, P., Biosensors in clinical chemistry. Clinica Chimica Acta, 2003. 334: p. 41-69.
4. Anke Prinz1, G.R., Mandy Diskar1 and Carsten Schultz2, Fluorescence and bioluminescence procedures for functional proteomics. Proteomics, 2008. 8: p. 1179-1196.
5. ROBERTO GAMBARI, G.F., CRISTINA RUTIGLIANO, NICOLETTA BIANCHI, and CARLO MISCHIATI, Biospecific Interaction Analysis (BIA) of Low-Molecular Weight DNA-Binding Drugs1. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2000. 294(370-377).
6. W. David Wilson a, Farial A. Tanious a, Amanda Mathis b, Denise Tevis a, James Edwin Hall b, David W. Boykin a, Antiparasitic compounds that target DNA. BIOCHIMIE, 2008. 90: p. 999-1014.
7. Pascal Hafliger, a.N.A., [a] Bernhard Spingler,[a] Oleg Georgiev,[b] Giampietro Viola,[c] and Roger Alberto*[a], Induction of DNA-Double-Strand Breaks by Auger Electrons from 99mTc Complexes with DNA-Binding Ligands. ChemBIOChem, 2005. 6: p. 414-421.
8. Pascal Haefliger, N.A., † Annabelle Renard,‡ Guya Giambonini-Brugnoli,| and a.R.A. Cornelia Marty, †, Cell Uptake and Radiotoxicity Studies of an Nuclear Localization Signal Peptide-Intercalator Conjugate Labeled with [99mTc(CO)3]+. Bioconjugate Chem., 2005. 16: p. 582-587.
9. Ladbury2*, I.H.a.J., Drug–DNA recognition: energetics and implications for design. JOURNAL OF MOLECULAR RECOGNITION, 2000. 13: p. 188-197.
10. Neidle, S., DNA minor-groove recognition by small molecules. Nat. Prod. Rep., 2001. 18: p. 291-309.
11. Elizabeth W. White a, Farial Tanious a,1, Mohamed A. Ismail a, Anthony P. Reszka b, and D.W.B.a. Stephen Neidle b, W. David Wilson a,*, Structure-specific recognition of quadruplex DNA by organic cations: Influence of shape, substituents and charge. Biophysical Chemistry, 2007. 126: p. 140-153.
12. Liang-Ping Lin1, L.-S.H., Chii-Wann Lin3, Chi-Kung Lee2, Ji-Liang Chen1, Su-Ming Hsu4, Shiming Lin5,* Su-Ming Hsu4, Shiming Lin5,*, Determination of Binding Constant of DNA-binding Drug to Target DNA by Surface Plasmon Resonance Biosensor Technology. Current Drug Targets - Immune, Endocrine & Metabolic Disorders, 2005. 5: p. 61-72.
13. Tzu-Sen Yang, d.Y.C., [a] Chien-Ming Wu,[a] Jem-Mau Lo,[a] Chi-Shiun Chiang,[a] Wun-Yi Shu,[b] Wei-Ju Chung,[a] Chung-Shan Yu,[a] Kuo-Ning Chiang,[c] and Ian C. Hsu*[a], Determining the Zero-Force Binding Energetics of an Intercalated DNA Complex by a Single-Molecule Approach. CHEMPHYSCHEM, 2009. 10: p. 2791-2794.
14. Bobrovnik*, S.A., Determination of antibody affinity by ELISA. Theory. J. Biochem. Biophys. Methods, 2003. 57: p. 213-236.
15. James A. Lofgren, S.D., * Jason J. Pennucci,* Christina M. Abbott,† and A.K. Daniel T. Mytych, * Steven J. Swanson,* and Michael C. Mullenix1*, Comparing ELISA and Surface Plasmon Resonance for Assessing Clinical Immunogenicity of Panitumumab. The Journal of Immunology, 2007. 178: p. 7467-7472.
16. Habauzit, D., J. Chopineau, and B. Roig, SPR-based biosensors: a tool for biodetection of hormonal compounds. Anal Bioanal Chem, 2007. 387(4): p. 1215-23.
17. Jir'ı´ Homola a, 1, Sinclair S. Yee a, Gu¨ nter Gauglitz b, Surface plasmon resonance sensors: review. Sensors and Actuators B, 1999. 54: p. 3-15.
18. KRETSCHMANN, E.R., H, Radiative decay of non radiative surface plasmons excited by light (Surface plasma waves excitation by light and decay into photons applied to nonradiative modes) ZEITSCHRIFT FUER NATURFORSCHUNG, 1968. 23A(2135-2136).
19. Homola, J., Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem, 2003. 377: p. 528-539.
20. Wolf, L.K., D.E. Fullenkamp, and R.M. Georgiadis, Quantitative angle-resolved SPR imaging of DNA-DNA and DNA-drug kinetics. J Am Chem Soc, 2005. 127(49): p. 17453-9.
21. Lauren K. Wolf, Y.G., and Rosina M. Georgiadis*, Kinetic Discrimination of Sequence-Specific DNA-Drug Binding Measured by Surface Plasmon Resonance Imaging and Comparison to Solution-Phase Measurements. J. AM. CHEM. SOC., 2007. 129: p. 10503-10511.
22. Xia Liu, D.S., Qinglin Zhang, Yuan Tian, Lan Ding, Hanqi Zhang, Wavelength-modulation surface plasmon resonance sensor. Trends in Analytical Chemistry, 2005. 24: p. 887-893.
23. S.G. Nelson*, K.S.J., S.S. Yee, High sensitivity surface plasmon resonance sensor based on phase detection. Sensors and Actuators B 1996: p. 187-191.
24. Chien-Ming Wua, Zhi-Cheng Jianb, Shen-Fen Joec, Liann-Be Chang, High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors and Actuators B, 2003. 92: p. 133-136.
25. http://www.biacore.com/lifesciences/index.html.
26. Urbaniczky*, S.S.a.C., Integrated Fluid Handling System for Biomolecular Interaction Analysis. Anal. Chem., 1991. 63: p. 2338-2345.
27. Binh Nguyen, F.A.T., W. David Wilson *, Biosensor-surface plasmon resonance: Quantitative analysis of small molecule–nucleic acid interactions. METHODS, 2007. 42: p. 150-161.
28. Ladbury*, A.A.a.J.E., Survey of the year 2004: literature on applications of isothermal titration calorimetry. JOURNAL OF MOLECULAR RECOGNITION, 2005.
29. Current Protocols in Cell Biology.
30. Brewer*, T.K.D.a.C.F., Thermodynamic Studies of Lectin-Carbohydrate Interactions by Isothermal Titration Calorimetry. Chem. Rev., 2002. 102: p. 387-429.
31. Bruno Pagano a, A.V.b., Carlo A. Mattia a, Luciano Mayol b, Antonio Randazzo b,*, Concetta Giancola c,**, Targeting DNA quadruplexes with distamycin A and its derivatives: An ITC and NMR study. BIOCHIMIE, 2008. 90: p. 1224-1232.
32. Jayaraman, B.N.M.S.S.A.S.S.S.I.N., SPR and ITC determination of the kinetics and the thermodynamics of bivalent versus monovalent sugar ligand–lectin interactions. Glycoconj J, 2008. 25: p. 313-321.
33. Yang Gao, L.K.W.a.R.M.G., Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Research, 2006. 34(11): p. 3370-3377.
34. ASHUTOSH CHILKOTI, P.H.T., AND PATRICK S. STAYTON*, Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: Contributions of tryptophan residues 79, 108, and 120. Biophysics, 1995. 92: p. 1754-1758.
35. GREGORY DE CRESCENZO, C.B., 1,2 YVES DUROCHER,2 and MARIO JOLICOEUR and 1, Kinetic Characterization by Surface Plasmon Resonance-Based Biosensors: Principle and Emerging Trends. Cellular and Molecular Bioengineering, 2008. 1(4): p. 204-215.
36. Shalini SHARMA*, S.B., Avadhesha SUROLIA‹1 and Sunil Kumar PODDER*, Evaluation of the stoichiometry and energetics of carbohydrate binding to Ricinus communis agglutinin : a calorimetric study. Biochem. J., 1998. 333: p. 539-542.