簡易檢索 / 詳目顯示

研究生: 顏誠威
Yen, Chan-Wei
論文名稱: 利用SPR與ITC探討APMED與DNA之親和力
Investigating the affinity of APMED to DNA using SPR and ITC
指導教授: 吳見明
Wu, Chien-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 88
中文關鍵詞: 表面電漿共振恆溫卡熱計藥物親和力
外文關鍵詞: Surface Plasmon Resonance, Isothermal Titration Calorimetry, drug affinity, λ-DNA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • APMED是一前導化合物,其結構類似DNA鹼基對,可嵌入DNA的雙股結構達到結合效果,期許發展為DNA的標靶藥物。DNA在不同細胞內,或位於不同的細胞週期,DNA可能具有不同的立體結構。本文選定表面電漿共振儀(SPR)與恆溫卡熱計(ITC)進行實驗,共同對APMED與不同DNA形式之間的親和力進行探討。SPR藉由偵測晶片上DNA與APMED反應的質量變化,推算兩者之間的親和力;ITC利用APMED對DNA進行滴定,偵測滴定過程中微弱的熱焓變化。
    本研究首先利用SPR比較APMED在不同DNA長度上的結果差異。利用18bp與30bp進行實驗,在短序列18bp對APMED的結合得到較高的親和力。接著探討晶片的重複固化對於APMED與DNA結合的影響,發現再生後晶片的DNA固化,反應後使得APMED結合的訊號上升,推測再生反應破壞晶片表面的齊整度,降低了不同實驗結果之間的 和 差異,導致最終的親和力趨向一致性。最後希望採用λ-DNA應證上列長度結果,卻發現λ-DNA表面電漿共振晶片上的固化不易,於是採用ITC對λ-DNA進行APMED的相關探討。
    將λ-DNA經65℃加熱後形成鏈狀λ-DNA。利用ITC得到18bp、30bp和鏈狀λ-DNA對於APMED的親和力較為接近,環狀λ-DNA所得到的親和力結果比鏈狀λ-DNA小,推測DNA長度對於親和力的影響不如立體結構。於是分析環狀、鏈狀λ-DNA對APMED結合情況的不同,發現環狀λ-DNA在三維空間中的摺疊,可能提供了更多APMED的結合位,但降低了環狀λ-DNA對於APMED的親和力,說明了18bp、30bp和鏈狀λ-DNA,在對於APMED親和力大於環狀λ-DNA的結果。
    整理SPR與ITC的結果,藉由本研究中探討多種DNA型式與APMED的親和力結果及相關分析,希望能更幫助了解APMED在DNA上的結合情形,以及未來應用在DNA相關藥物的發展方向。


    第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 DNA藥物的親和力 3 1.2.2 APMED (N-(2-Aminoethy)-N’-pyrene-1-ylmethylethane-1,2-diamine) 8 1.2.3 酵素結合免疫吸附法 (Enzyme-linked immunosobent assay; ELISA) 12 1.2.4 表面電漿共振 (Surface Plasmon Resonance; SPR) 16 1.2.5 恆溫卡熱計 (Isothermal Titration Calorimetry; ITC) 21 1.3 研究目的 25 第二章 材料與方法 26 2.1 表面電漿共振 26 2.1.1 實驗材料 26 2.1.2 實驗儀器 27 2.1.3 微流道清洗 28 2.1.4 Biotin-λ-DNA的製備 29 2.1.5 晶片固化 32 2.1.6 藥物的配製與注射 34 2.1.7 數據擬合 36 2.1.8 再生重複性 37 2.2 恆溫卡熱計 38 2.2.1 實驗材料 38 2.2.2 儀器清洗 39 2.2.3 實驗溶液的配製 40 2.2.4 反應物的置放 41 2.2.5 ITC參數設定 43 2.2.6 數據擬合 44 第三章 結果與討論 45 3.1 表面電漿共振 45 3.1.1 晶片測試 45 3.1.2 表面固化條件 46 3.1.3 以表面電漿共振儀進行觀測分析 48 3.1.4 非專一性測試 50 3.1.5 流速對訊號的影響 52 3.1.6 APMED在18bp、30bp DNA的反應曲線 53 3.1.7 0.05% SDS進行再生反應(regeneration) 58 3.1.8 再生後,APMED在18bp、30bp DNA的反應曲線。 60 3.1.9 biotin-λ-DNA的固化,APMED的結合。 67 3.2 恆溫卡熱計 69 3.2.1 30bp-DNA在一般室溫溶液狀態的互補情形 69 3.2.2 以30bp-DNA與APMED反應,尋找最好的反應比例 70 3.2.3 18bp-DNA、30bp-DNA與APMED的滴定結果 75 3.2.4 λ-DNA與APMED的滴定結果 76 第四章 結論 82 參考文獻 85

    1. JEAN-BERNARD LE PECQ*, N.-D.-X., CHARLES GOSSE*, AND CLAUDE PAOLETTI*, A New Antitumoral Agent: 9-Hydroxyellipticine. Possibility of a Rational Design of Anticancerous Drugs in the Series of DNA Intercalating Drugs. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974. 71(12): p. 5078-5082.
    2. Stacie J. Froelich-Ammon‡, D.A.B., Marcia W. Patchan§, Sarah H. Elsea‡¶, Richard B. Thompson§, and Neil Osheroff‡i**, Increased Drug Affinity as the Mechanistic Basis for Drug Hypersensitivity of a Mutant Type II Topoisomerase*. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 1995. 270(47): p. 28018-28021.
    3. D’Orazio*, P., Biosensors in clinical chemistry. Clinica Chimica Acta, 2003. 334: p. 41-69.
    4. Anke Prinz1, G.R., Mandy Diskar1 and Carsten Schultz2, Fluorescence and bioluminescence procedures for functional proteomics. Proteomics, 2008. 8: p. 1179-1196.
    5. ROBERTO GAMBARI, G.F., CRISTINA RUTIGLIANO, NICOLETTA BIANCHI, and CARLO MISCHIATI, Biospecific Interaction Analysis (BIA) of Low-Molecular Weight DNA-Binding Drugs1. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2000. 294(370-377).
    6. W. David Wilson a, Farial A. Tanious a, Amanda Mathis b, Denise Tevis a, James Edwin Hall b, David W. Boykin a, Antiparasitic compounds that target DNA. BIOCHIMIE, 2008. 90: p. 999-1014.
    7. Pascal Hafliger, a.N.A., [a] Bernhard Spingler,[a] Oleg Georgiev,[b] Giampietro Viola,[c] and Roger Alberto*[a], Induction of DNA-Double-Strand Breaks by Auger Electrons from 99mTc Complexes with DNA-Binding Ligands. ChemBIOChem, 2005. 6: p. 414-421.
    8. Pascal Haefliger, N.A., † Annabelle Renard,‡ Guya Giambonini-Brugnoli,| and a.R.A. Cornelia Marty, †, Cell Uptake and Radiotoxicity Studies of an Nuclear Localization Signal Peptide-Intercalator Conjugate Labeled with [99mTc(CO)3]+. Bioconjugate Chem., 2005. 16: p. 582-587.
    9. Ladbury2*, I.H.a.J., Drug–DNA recognition: energetics and implications for design. JOURNAL OF MOLECULAR RECOGNITION, 2000. 13: p. 188-197.
    10. Neidle, S., DNA minor-groove recognition by small molecules. Nat. Prod. Rep., 2001. 18: p. 291-309.
    11. Elizabeth W. White a, Farial Tanious a,1, Mohamed A. Ismail a, Anthony P. Reszka b, and D.W.B.a. Stephen Neidle b, W. David Wilson a,*, Structure-specific recognition of quadruplex DNA by organic cations: Influence of shape, substituents and charge. Biophysical Chemistry, 2007. 126: p. 140-153.
    12. Liang-Ping Lin1, L.-S.H., Chii-Wann Lin3, Chi-Kung Lee2, Ji-Liang Chen1, Su-Ming Hsu4, Shiming Lin5,* Su-Ming Hsu4, Shiming Lin5,*, Determination of Binding Constant of DNA-binding Drug to Target DNA by Surface Plasmon Resonance Biosensor Technology. Current Drug Targets - Immune, Endocrine & Metabolic Disorders, 2005. 5: p. 61-72.
    13. Tzu-Sen Yang, d.Y.C., [a] Chien-Ming Wu,[a] Jem-Mau Lo,[a] Chi-Shiun Chiang,[a] Wun-Yi Shu,[b] Wei-Ju Chung,[a] Chung-Shan Yu,[a] Kuo-Ning Chiang,[c] and Ian C. Hsu*[a], Determining the Zero-Force Binding Energetics of an Intercalated DNA Complex by a Single-Molecule Approach. CHEMPHYSCHEM, 2009. 10: p. 2791-2794.
    14. Bobrovnik*, S.A., Determination of antibody affinity by ELISA. Theory. J. Biochem. Biophys. Methods, 2003. 57: p. 213-236.
    15. James A. Lofgren, S.D., * Jason J. Pennucci,* Christina M. Abbott,† and A.K. Daniel T. Mytych, * Steven J. Swanson,* and Michael C. Mullenix1*, Comparing ELISA and Surface Plasmon Resonance for Assessing Clinical Immunogenicity of Panitumumab. The Journal of Immunology, 2007. 178: p. 7467-7472.
    16. Habauzit, D., J. Chopineau, and B. Roig, SPR-based biosensors: a tool for biodetection of hormonal compounds. Anal Bioanal Chem, 2007. 387(4): p. 1215-23.
    17. Jir'ı´ Homola a, 1, Sinclair S. Yee a, Gu¨ nter Gauglitz b, Surface plasmon resonance sensors: review. Sensors and Actuators B, 1999. 54: p. 3-15.
    18. KRETSCHMANN, E.R., H, Radiative decay of non radiative surface plasmons excited by light (Surface plasma waves excitation by light and decay into photons applied to nonradiative modes) ZEITSCHRIFT FUER NATURFORSCHUNG, 1968. 23A(2135-2136).
    19. Homola, J., Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem, 2003. 377: p. 528-539.
    20. Wolf, L.K., D.E. Fullenkamp, and R.M. Georgiadis, Quantitative angle-resolved SPR imaging of DNA-DNA and DNA-drug kinetics. J Am Chem Soc, 2005. 127(49): p. 17453-9.
    21. Lauren K. Wolf, Y.G., and Rosina M. Georgiadis*, Kinetic Discrimination of Sequence-Specific DNA-Drug Binding Measured by Surface Plasmon Resonance Imaging and Comparison to Solution-Phase Measurements. J. AM. CHEM. SOC., 2007. 129: p. 10503-10511.
    22. Xia Liu, D.S., Qinglin Zhang, Yuan Tian, Lan Ding, Hanqi Zhang, Wavelength-modulation surface plasmon resonance sensor. Trends in Analytical Chemistry, 2005. 24: p. 887-893.
    23. S.G. Nelson*, K.S.J., S.S. Yee, High sensitivity surface plasmon resonance sensor based on phase detection. Sensors and Actuators B 1996: p. 187-191.
    24. Chien-Ming Wua, Zhi-Cheng Jianb, Shen-Fen Joec, Liann-Be Chang, High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors and Actuators B, 2003. 92: p. 133-136.
    25. http://www.biacore.com/lifesciences/index.html.
    26. Urbaniczky*, S.S.a.C., Integrated Fluid Handling System for Biomolecular Interaction Analysis. Anal. Chem., 1991. 63: p. 2338-2345.
    27. Binh Nguyen, F.A.T., W. David Wilson *, Biosensor-surface plasmon resonance: Quantitative analysis of small molecule–nucleic acid interactions. METHODS, 2007. 42: p. 150-161.
    28. Ladbury*, A.A.a.J.E., Survey of the year 2004: literature on applications of isothermal titration calorimetry. JOURNAL OF MOLECULAR RECOGNITION, 2005.
    29. Current Protocols in Cell Biology.
    30. Brewer*, T.K.D.a.C.F., Thermodynamic Studies of Lectin-Carbohydrate Interactions by Isothermal Titration Calorimetry. Chem. Rev., 2002. 102: p. 387-429.
    31. Bruno Pagano a, A.V.b., Carlo A. Mattia a, Luciano Mayol b, Antonio Randazzo b,*, Concetta Giancola c,**, Targeting DNA quadruplexes with distamycin A and its derivatives: An ITC and NMR study. BIOCHIMIE, 2008. 90: p. 1224-1232.
    32. Jayaraman, B.N.M.S.S.A.S.S.S.I.N., SPR and ITC determination of the kinetics and the thermodynamics of bivalent versus monovalent sugar ligand–lectin interactions. Glycoconj J, 2008. 25: p. 313-321.
    33. Yang Gao, L.K.W.a.R.M.G., Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Research, 2006. 34(11): p. 3370-3377.
    34. ASHUTOSH CHILKOTI, P.H.T., AND PATRICK S. STAYTON*, Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: Contributions of tryptophan residues 79, 108, and 120. Biophysics, 1995. 92: p. 1754-1758.
    35. GREGORY DE CRESCENZO, C.B., 1,2 YVES DUROCHER,2 and MARIO JOLICOEUR and 1, Kinetic Characterization by Surface Plasmon Resonance-Based Biosensors: Principle and Emerging Trends. Cellular and Molecular Bioengineering, 2008. 1(4): p. 204-215.
    36. Shalini SHARMA*, S.B., Avadhesha SUROLIA‹1 and Sunil Kumar PODDER*, Evaluation of the stoichiometry and energetics of carbohydrate binding to Ricinus communis agglutinin : a calorimetric study. Biochem. J., 1998. 333: p. 539-542.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE