簡易檢索 / 詳目顯示

研究生: 邱于軒
Chiu, Yu-Hsuan.
論文名稱: 繪本教學對幼兒運算思維學習成效之探究
Exploring the Effects of Picture Book Teaching on Young Children’s Learning of Computational Thinking
指導教授: 張菀真
Chang, Wan-Chen
口試委員: 許衷源
Hsu, Chung-Yuan
曹亞倫
Tsao, Ya-Lun
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 幼兒教育學系碩士在職專班
Master Program in Early Childhood Education for In-service Practitioners
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 115
中文關鍵詞: 幼兒教育運算思維資訊科技教育繪本教學不插電
外文關鍵詞: early childhood education, computational thinkin, information technology education, picture book teaching, unplugged
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討繪本教學如何影響幼兒學習運算思維概念於幼兒園課程活動中;並進一 步比較兩種不同教學對於幼兒學習運算思維的成效差異。本研究採準實驗設計,以臺北市某 公立國小附設幼兒園混齡班學童共五十九名為對象,實驗組進行「繪本運算思維取向教學」; 對照組進行「以例行性活動問題解決為基礎之運算思維取向教學」,由研究者以及班級教師共 五位擔任教學者。在實驗教學前、後以及實驗教學結束後四週進行運算思維挑戰題目,作為 前、後與延宕測驗成績以進行分析,並蒐集參與者課程中的學習單作為幼兒學習歷程之分析 資料。每組幼兒每週接受教學課程活動一次,每次時間為一節課四十分鐘,為期九週;兩組 教學課程活動之實施次數及時間均相同。研究結果發現:兩組幼兒接受運算思維課程後,其 運算思維表現均較前測顯著進步,並且延宕後測與後測沒有顯著差異。透過運算思維測驗的 題目難度進行分析,顯示實驗組與對照組顯著提昇簡單與中等層次問題表現,困難層次問題 僅實驗組有顯著成效;運算思維測驗的題目類型中,實驗組與對照組顯著提昇問題拆解、模 式識別類型題目,實驗組更進一步顯著提昇抽象化、演算法設計問題。從學習歷程來看,實 驗組從前期大多幼兒在沒有運算思維表現逐漸到後期能展現運算思維觀點;而對照組即便到 後期仍有幼兒沒有運算思維表現。因此,繪本作為運算思維教學課程活動整合的不插電工具 引發了不同於以例行性活動為基礎之學習廣度及深度。


    The purpose of this study is to explore how picture books integrated computational thinking(CT) concepts into kindergarten curriculum activities and to compare the effectiveness of two different teaching orientations in children's development of operational thinking concepts. This study employed a quasi-experimental design involving fifty-nine students from a mixed-age kindergarten class in Taipei City. Two teaching orientations were compared: "integrating CT curriculum with picture books" for the experimental group and "routine activity-based CT " for the control group. The computational thinking challenge test(CTCT) was conducted before, after, and four weeks after the intervention period. The results of the pre-, post-, and delayed tests were used for analysis. Students’ working sheets were collected as analysis data for their learning process. Each group of preschoolers received one teaching session per week, lasting for a 40-minute class, over a period of nine weeks.. The results found that after the two groups of children received the computational thinking courses, their performance improved significantly compared with the pre-test, and there was no significant difference between the delayed post-test and the post-test. An analysis of the difficulty of CTCT showed that the experimental group and the control group significantly improved their performance on simple and medium-level questions, while only the experimental group had a significant effect on difficult-level questions. Among the types of questions in CTCT, the experimental group and the control group significantly improved their performance in problem decomposition and pattern recognition type questions. The experimental group further significantly improved abstraction and algorithm design type. From the perspective of the learning process, most children in the experimental group gradually showed no CT performance in the early stage and gradually showed CT concepts in the later stage; while in the control group, even in the later stage, there were still some children who did not have CT performance. Therefore, picture books serve as unplugged tools for the integration of CT teaching course activities, triggering a breadth and depth of learning that is different from that based on routine activities.

    目錄 摘要 表目錄 圖目錄 第一章 緒論 1 第一節 研究背景及動機 1 第二節 研究目的及問題 3 第三節 名詞解釋 4 第二章 文獻探討 7 第一節 幼兒學習運算之意涵及相關研究 7 第二節 繪本教學相關研究及透過繪本學習運算思維之可行性 28 第三節 文獻探討對本研究之啟發 37 第三章 研究方法 39 第一節 研究對象 39 第二節 研究設計 44 第三節 研究工具 45 第四節 實驗課程活動 54 第五節 研究程序 67 第六節 資料分析 68 第七節 研究倫理 74 第四章 研究結果及討論 75 第一節 兩種不同幼兒運算思維取向教學之學習成效 75 第二節 兩種不同課程活動對幼兒學習運算思維之歷程差異 79 第三節 學習歷程分析 83 第五章 討論與建議 90 第一節 討論 90 第二節 建議 98 參考文獻 101 附錄 108 附錄一 兒童家長/法定代理人之情同意書 108 附錄二 實驗組課程活動計畫 110 附錄三 對照組課程活動計畫 113

    中文
    參考文獻
    王淑娟(2003)。兒童圖畫書創造思考教學提升學童創造力之行動研究〔碩士論文,國立臺南 大學〕。臺灣博碩士論文知識加值系統。
    吳聲毅(2018)。STEM 教育中的運算思維學習。科學研習月刊,57(5),2-3。 林敏宜(2000)。圖畫書的欣賞與應用。心理。 侯惠澤(2014)。愈玩愈愛學,達人教你挑。親子天下。 胡秋帆(2022)。高中生運算思維評量工具之發展〔博士論文,國立臺灣大學〕。臺灣博碩士
    論文知識加值系統。
    張揚昀(2022)。KIBO 程式機器人課程培養幼兒運算思維之研究〔碩士論文,國立臺東大學〕。
    臺灣博碩士論文知識加值系統。
    教育部(2017)。幼兒園教保活動課程大綱。教育部國民及學前教育署。 教育部(2018)。十二年國民基本教育課程綱要:國民中小學暨普通型高級中等學校「科技
    領域」。教育部國民及學前教育署。 教育部(2019)。國際運算思維推動挑戰賽。Bebras 國際運算思維挑戰賽。
    http://bebras.csie.ntnu.edu.tw/ 陳玉雪(2020)。為繪本教學設計幼兒認知教具之教學研究〔碩士論文,國立中山大學〕。臺
    灣博碩士論文知識加值系統。 陳秀文(2020)。當代圖畫書的研究取向與圖畫書的新美學――以台灣和北美地區為例。國
    立臺灣美術館。
    陳宛瑜(2021)。幼兒運算思維遊戲教學之行動研究〔碩士論文,國立臺中教育大學〕。臺灣 博碩士論文知識加值系統。
    陳怡幸(2021)。親子共讀之數學語彙:繪本類型與繪本特徵分析研究〔碩士論文,國立臺北 護理健康大學〕。臺灣博碩士論文知識加值系統。
    陳埩淑(2019)。幼兒數學教學另一章:結合繪本故事提升不確定性思維。幼兒教育年刊,30, 75-99。
    陳筠婷(2017)。托嬰中心閱讀環境與托育人員閱讀行為之探討。〔碩士論文,中臺科技大 學〕。臺灣博碩士論文知識加值系統。
    陳儒晰、黃金花(2007)。幼兒資訊素養的教育社會學分析。台灣教育社會學研究,7(2), 1-18。
    黃耀榮、張怡君(2009)。兒童認知發展應用在幼兒教育環境設計語言建構之探討。設計學報, 10(4)。
    楊修瑀(2022)。運算思維教育機器人對國小學生運算思維學習成效之研究〔碩士論文,國 立屏東大學〕。臺灣博碩士論文知識加值系統。
    臺北市政府教育局(2018)。臺北市科技領域國小資訊科技課程教學綱要。 臺北市政府教育局(2020)。臺北市幼兒園運算思維取向教學示例成果。 盧螢甄(2022)。不插電運算思維課程對於國小低年級學童運算思維能力之提升〔碩士論文,
    國立臺北教育大學〕。臺灣博碩士論文知識加值系統。 蕭嘉琳(2016)。使用遊戲式實體互動介面提升幼兒運算思維能力。〔碩士論文,中原大學〕。
    臺灣博碩士論文知識加值系統。
    Akiba, D. (2022). Computational thinking and coding for young children: A hybrid app roachto link unplugged and plugged activities. Education Sciences, 12(11), 793.
    Allsop, Y. (2019). Assessing computational thinking process using a multiple evaluation approach. International journal of child-computer interaction, 19(1), 30-55.
    Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47-57.
    Ballard, E. D., & Haroldson, R. (2022). Analysis of computational thinking in Children’s literature for K-6 students: Literature as a non-programming unplugged resource. Journal of Educational Computing Research, 59(8), 1487-1516.
    Bekker, T., Bakker, S., Taconis, R., & van der Sanden, A. Bakala, E., Gerosa, A., Hourcade, J., & Tejera, G.(2021). Preschool children, robots, and computational thinking: A systematic review. International Journal of Child-Computer Interaction, 29(45), 95-98.
    Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72(1), 145-157.
    Bers, M. U., González-González, C., & Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education,138(1), 130-145.
    Chuang, H. C., Hu, C. F., Wu, C. C., & Lin, Y. T. (2015). Computational thinking curriculum for K-
    12 education-a delphi survey. Learning and Teaching in Computing and Engineering, 213-214. Clarke-Midura, J., Silvis, D., Shumway, J. F., Lee, V. R., & Kozlowski, J. S. (2021). Developing a kindergarten computational thinking assessment using evidence-centered design: the case of
    algorithmic thinking. Computer Science Education, 31(2), 117-140.
    Computer Science Teachers Association. (2011). CSTA K–12 computer science standards. The ACM
    K-12 Education Task Force, 13(1), 20-29.
    Critten, V., Hagon, H., & Messer, D. (2022). Can pre-school children learn programming and coding
    through guided play activities? A case study in computational thinking. Early Childhood
    Education Journal, 50(6), 969-981.
    Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014). Introducing teachers to
    computational thinking using unplugged storytelling. In Proceedings of the 9th workshop in
    primary and secondary computing education, 89-92.
    Dagienė, V., & Sentance, S. (2016). It’s computational thinking! Bebras tasks in the curriculum. In
    International Conference on Informatics in Schools: Situation, Evolution, and Perspectives, 28-
    39.
    Del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking
    through unplugged activities in early years of Primary Education. Computers & Education,
    150(1), 103832.
    Denning, P. J., & Tedre, M. (2021). Computational thinking: A disciplinary perspective. Informatics
    in Education, 20(3), 361.
    Department for Educationin England. (2013). National curriculumin England: Computing
    programmes of study.
    E. Relkin., & M. Bers. (2021). TechCheck-K: A measure of Ccmputational thinking for kindergarten
    children. 2021 IEEE Global Engineering Education Conference, 1696-1702.
    http:doi.org/10.1109/EDUCON46332.2021.9453926
    Ezeamuzie, N. O., & Leung, J. S. (2022). Computational thinking through an empirical lens: A
    systematic review of literature. Journal of Educational Computing Research, 60(2), 481-511. Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten children in a computer programming environment: A case study. Computers & Education,63(1), 87-97.
    Gerosa, A., Koleszar, V., Tejera, G., Gómez-Sena, L., & Carboni, A. (2021). Cognitive abilities and
    computational thinking at age 5: Evidence for associations to sequencing and symbolic number
    comparison. Computers and Education, 2(7),100043.
    Guo, F., Luo, Y., Liu, L., Shi, J., & Coates, H. (2019). Analysing Mechanisms for Evaluating Higher
    Education Outcomes in China. Higher Education Policy , 32(4), 557-575.
    Hadad, R., Thomas, K., Kachovska, M., & Yin, Y. (2020). Practicing formative assessment for computational thinking in making environments. Journal of Science Education and Technology,
    29(1), 162-173.
    Heuvel-Panhuizen, M. V. D., & Boogaard, S. V. D. (2008). Picture books as an impetus for
    kindergartners' mathematical thinking. Mathematical Thinking and Learning, 10(4), 341-373. Hooshyar, D., Pedaste, M., Saks, K., Leijen, Ä., Bardone, E., & Wang, M. (2020). Open learner
    models in supporting self-regulated learning in higher education: A systematic literature review.
    Computers & education, 15(4), 103-178.
    Hosseini, S., Camacho, C., Donjuan, K., Pego, L., & Escamilla, J. (2023). Unplugging for Student
    Success: Examining the Benefits of Disconnecting from Technology during COVID-19
    Education for Emergency Planning. Education Sciences, 13(5), 446.
    Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking:
    Suggestions based on a review of the literature. Computers & Education, 126(11), 296-310. Huck, C. S. (1993). Children's literature in the elementary school. Harcourt Brace, 6277 Sea Harbor
    Drive, Orlando, FL 32887.
    Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G.(2015). Supporting all learners in school-wide computational thinking: A cross-case qualitative analysis. Computers & Edu-cation, 82(3), 263–279.
    Jeannette, M. Wing, (2006). Computational Thinking. Communications of the Association for Computing Machinery, 49(3), 33-35.
    Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4), 245–255.
    Kazakoff, E., & Bers, M. (2012). Programming in a robotics contextin the kindergarten classroom: The impact on sequencing skills. Journal of Educational Multimedia and Hypermedia, 21(4),371–391.
    Li, S. (2019). Lagrange coded computing: Optimal design for resiliency, security, and privacy.
    Proceedings of Machine Learning Research, 4(1) ,1215-1225.
    Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R.
    A. (2020). Computational thinking is more about thinking than computing. Journal for STEM
    Education Research, 3(1), 1-18.
    Linda Mannila., Valentina Dagiene., Barbara Demo., Natasa Grgurina., Claudio Mirolo., Lennart
    Rolandsson., and Amber Settle. (2014). Computational thinking in K-9 education. Association
    for Computing Machinery, 1-29. https://doi.org/10.1145/2713609.2713610
    Ling, U. L., Saibin, T. C., Labadin, J., & Aziz, N. A. (2017).Preliminary investigation: Teachers’ perception on computa-tional thinking concepts. Journal of Telecommunication, Elec-tronic and
    Computer Engineering, 9(2), 23-29.
    Lombardi, G. (2022). The role of unplugged coding activity in developing computational thinking in
    ages 6-11. In Research Anthology on Computational Thinking, Programming, and Robotics in
    the Classroom, 309-325.
    Looi, C. K., How, M. L., Longkai, W., Seow, P., & Liu, L. (2018). Analysis of linkages between an
    unplugged activity and the development of computational thinking. Computer Science
    Education, 28(3), 255–279.
    Lu, Y., Yuan, J., Lu, X., Su, C., Zhang, Y., Wang, C. (2018). Major threats of pollution and climate
    change to global coastal ecosystems and enhanced management for sustainability.
    Environmental Pollution, 23(9), 670-680.
    Luo, F., Antonenko, P. D., & Davis, E. C. (2020). Exploring the evolution of two girls’ conceptions
    and practices in computational thinking in science. Computers & Education, 146(3), 213-215. Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
    programming: What is next for K-12? Computers in Human Behavior, 41(12), 51–61. Macedonia, M., Mu ̈ller, K., & Friederici, A. D. (2011). The impact of iconic gestures on foreign
    language word learning and its neural substrate. Human Brain Mapping, 32(6), 982–998. Mahzoon-Hagheghi, M., Yebra, R., Johnson, R. D., & Sohn, L. N. (2018). Fostering a greater understanding of science in the classroom through children's literature. Texas Journal of Literacy
    Education, 6(1), 41-50.
    Manches, A., & Plowman, L. (2017). Computing education in children’s early years: A call for debate.British Journal of Educational Technology, 48(1), 191–201.
    Massey, C. (2015). Algorithm aversion: people erroneously avoid algorithms after seeing them err.
    Journal of Experimental Psychology: General, 144(1), 114.
    Michal Armoni., Judith Gal-Ezer. (2014). Early computing education: why? what? when? who?. ACM
    Inroads, 5(4), 54–59. https://doi.org/10.1145/2684721.2684734
    Miller, E. S. (2021). Designing Interactive Storytelling Games to Teach Computational Thinking. In
    International Conference on Human-Computer Interaction, 342-351.
    Nakamura, T., & Kawasaki, T. (2019). Computer science unplugged for developing.computational
    thinking and mathematical thinking. In 2019 International Joint Conference on Information,
    Media and Engineering, 305-308.
    Nodelman, P. (1988). Words about pictures: The narrative art of children's picture books. University
    of Georgia Press.
    Papert, S. (1980). Mindstorms: children, computers, and powerful ideas, 40.
    Relkin, E., de Ruiter, L. E., & Bers, M. U. (2021). Learning to code and the acquisition of
    computational thinking by young children. Computers & education, 169(7), 104222.
    Saxena, A., Lo, C.K., &Hew, K.F. (2020). Designing unplugged and plugged activities to cultivate computational thinking: An exploratory study in early childhood education. Asia-Pacific Edu
    Res 29, 55–66. https://doi.org/10.1007/s40299-019-00478-w
    Smith, K. (2017). New materials for teaching computational thinking in early childhood education.
    Doctoral dissertation, Massachusetts Institute of Technology, 39(3), 10-16.
    Soleimani, A., Herro, D., & Green, K. E. (2019). CyberPLAYce—A tangible, interactive learning tool fostering children’s computational thinking through storytelling. International Journal of
    Child-Computer Interaction, 20(6), 9-23.
    Su, J., & Yang, W. (2022). Artificial intelligence in early childhood education: A scoping review.
    Computers and Education: Artificial Intelligence, 3(1), 17-24.
    Su, J., & Zhong, Y. (2022). Artificial Intelligence (AI) in early childhood education: Curriculum
    design and future directions. Computers and Education: Artificial Intelligence, 3(4), 674. Tengler, K., Kastner-Hauler, O., & Sabitzer, B. (2021). Tell, draw and code–teachers’ intention to a narrative introduction of computational thinking. In International Conference on Informatics
    in Schools: Situation, Evolution, and Perspectives , 29-42.
    Tsai, M. J., Liang, J. C., & Hsu, C. Y. (2021). The computational thinking scale for computer literacyeducation. Journal of Educational Computing Research, 59(4), 579-602.
    Tsarava, K., Moeller, K., Pinkwart, N., Butz, M., Trautwein, U., & Ninaus, M. (2017). Training computational thinking: Game-based unplugged and plugged-in activities in primary school.
    In European conference on games based learning. Academic Conferences International Limited,
    10(1), 687-695.
    Vartiainen, H., Tedre, M., & Valtonen, T. (2020). Learning machine learning with very young children:
    Who is teaching whom?. International journal of child-computer interaction, 25(9), 24-27. Veenhuyzen, S. (2021). Using Picture Books to Support Computational Thinking.
    Wang, D., Luo, L., Luo, J., Lin, S., & Ren, G. (2022). Developing Computational Thinking: Design-
    based learning and interdisciplinary activity design. Applied Sciences, 12(21), 11033.
    Yin, B., Corradi, F., & Bohté, S. M. (2020). Effective and efficient computation with multiple- timescale spiking recurrent neural networks. In International Conference on Neuromorphic
    Systems 2020, 1-8.

    QR CODE