研究生: |
黃郁心 Huang, Yu-Hsin |
---|---|
論文名稱: |
在線蟲神經系統中LIN-2與UNC-104的交互作用及其活化UNC-104運動能力的分子機制 Molecular Mechanisms Underlying LIN-2's Ability to Interact with UNC-104 and to Activate Its Motility in the Nervous System of C. elegans |
指導教授: |
王歐力
Oliver I. Wagner |
口試委員: |
桑自剛
潘俊良 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | LIN-2蛋白 、微管分子馬達UNC-104/KIF1A 、神經軸突運輸 、秀麗隱桿線蟲 |
外文關鍵詞: | LIN-2, UNC-104/KIF1A, axonal transport, C. elegans |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
UNC-104/KIF1A是一種具有神經專一性的分子馬達,於神經軸突的微管上移動,主要功能為運輸軸突中的突觸囊泡。然而,如何調控UNC-104其方向性運輸特性的分子機制尚未被完全了解。近期的研究指出UNC-104所攜帶的貨物(如突觸前驅物)能夠調控分子馬達的運動。例如active zone蛋白 SYD-2能夠促進UNC-104往anterograde的方向移動。SYD-2 會與UNC-104的特定區域coiled-coil結合,我們研究其他的文獻發現另一個蛋白LIN-2也會與這個區域結合,因此,我們推測LIN-2可能也會參與UNC-104的調控機制。LIN-2屬於一個蛋白質家族: membrane-associated guanylate kinase (MAGUK)家族,它在哺乳類中的同源蛋白為CASK,CASK是由許多特殊區堿構成的鷹架蛋白(multidomain scaffolding protein)且在神經中的表現量特別高。有趣的是,在之前的研究中發現UNC-104具有一個MAGUK蛋白的結合位(MAGUK binding stalk, MBS),而我們的酵母菌雙雜合實驗的確顯示UNC-104的MBS會與LIN-2的GUK區域結合。另一個有趣的發現為LIN-2ΔGUK雖然無法與UNC-104的MBS結合,卻會和UNC-104的FHA-CC2有很強的交互作用,有些研究發現FHA-CC2可能會負向地調控馬達的活性。此外,LIN-2的SH3-GUK被視為一個功能性單元,我們的實驗顯示SH3-GUK對於LIN-2 與UNC-104 的MBS結合是有抑制性的,然而,SH3-GUK卻與FHA-CC2有很強的交互作用。除了in vitro的探討,我們也發現在lin-2 基因被剔除的秀麗隱桿線蟲中,UNC-104往anterograde方向移動的能力受到影響 (anterograde移動路徑變短),而往retrograde方向的運輸(由另一個分子馬達dynein負責)卻被提昇了(retrograde速度變快)。這些數據顯示,在沒有LIN-2蛋白的情況下,UNC-104與dynein間類似拔河的競爭現象受到影響,UNC-104較容易輸給dynein,造成UNC-104往anterograde方向的運輸能力減弱,而由dynein負責往retrograde方向的運輸則被提昇。這些結果顯示了LIN-2所扮演的新角色:與UNC-104進行交互作用並且活化UNC-104的運動能力。
UNC-104/KIF1A is microtubule-dependent, neuron-specific kinesin responsible for fast axonal transport of synaptic vesicles. However, the molecular mechanism of regulating UNC-104 directional transport is not fully understood. Recent studies suggest that cargo as synaptic precursors could regulate the motor’s movements. For example, the active zone proteins SYD-2 was found to facilitate UNC-104’s motility in anterograde directions. SYD-2 binds to a specific domain at the motor’s coiled-coil region and reviewing the literature we found that another protein LIN-2 also binds to this region, therefore this protein might be also involved in motor regulation. LIN-2 is a member of the membrane-associated guanylate kinase (MAGUK) family, and its mammalian homologue of LIN-2 is CASK, multidomain scaffolding protein highly expressed in neurons. Interestingly, a previous study revealed that UNC-104 contains a MBS (MAGUK binding stalk) site, and indeed, our yeast two-hybrid assay showed that a MBS construct of UNC-104 interacts with LIN-2’s GUK domain. Interestingly, a LIN-2ΔGUK construct reveals reduced interaction with UNC-104’s MBS, but strong interaction with UNC-104’s FHA-CC2 domain, suggesting to negatively regulate the motor’s activity. In addition, the integrated SH3-GUK unit may be inhibitory for LIN-2’s interaction with the MBS while on the other hand it strongly interacts with the FHA-CC2 domain. Besides these in vitro investigations, we found that in lin-2 knockout worms, the anterograde transport of UNC-104 is reduced (displaying e.g. shorter run-lengths), while the retrograde transport (carried out by the dynein motor) is enhanced. These data implicate that loss-of-function of LIN-2 causes UNC-104 to suffer defeat in tug-of-war events between opposing motors, resulting in impaired anterograde but facilitated retrograde transport. Together, these data demonstrate a novel role for LIN-2 to directly interact with UNC-104 and to activate the motor’s motility.
1. Newman, R.A. and K.E. Prehoda, Intramolecular interactions between the SRC homology 3 and guanylate kinase domains of discs large regulate its function in asymmetric cell division. J Biol Chem, 2009. 284(19): p. 12924-32.
2. Hsu, C.C., J.D. Moncaleano, and O.I. Wagner, Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-alpha) in C. elegans neurons. Neuroscience, 2011. 176: p. 39-52.
3. Funke, L., S. Dakoji, and D.S. Bredt, Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem, 2005. 74: p. 219-45.
4. Gross, S.P., Hither and yon: a review of bi-directional microtubule-based transport. Phys Biol, 2004. 1(1-2): p. R1-11.
5. Vale, R.D., The molecular motor toolbox for intracellular transport. Cell, 2003. 112(4): p. 467-80.
6. Hirokawa, N. and R. Takemura, Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci, 2005. 6(3): p. 201-14.
7. Hirokawa, N., S. Niwa, and Y. Tanaka, Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 2010. 68(4): p. 610-38.
8. Brown, A., Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol, 2003. 160(6): p. 817-21.
9. Terada, S., et al., Kinesin-1/Hsc70-dependent mechanism of slow axonal transport and its relation to fast axonal transport. EMBO J, 2010. 29(4): p. 843-54.
10. De Vos, K.J., et al., Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci, 2008. 31: p. 151-73.
11. Chevalier-Larsen, E. and E.L. Holzbaur, Axonal transport and neurodegenerative disease. Biochim Biophys Acta, 2006. 1762(11-12): p. 1094-108.
12. Hirokawa, N., Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 1998. 279(5350): p. 519-26.
13. Hall, D.H. and E.M. Hedgecock, Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell, 1991. 65(5): p. 837-47.
14. Zhou, H.M., I. Brust-Mascher, and J.M. Scholey, Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J Neurosci, 2001. 21(11): p. 3749-55.
15. Hammond, J.W., et al., Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol, 2009. 7(3): p. e72.
16. Klopfenstein, D.R., et al., Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell, 2002. 109(3): p. 347-58.
17. Verhey, K.J. and J.W. Hammond, Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol, 2009. 10(11): p. 765-77.
18. Pierce, D.W., et al., Single-molecule behavior of monomeric and heteromeric kinesins. Biochemistry, 1999. 38(17): p. 5412-21.
19. Lee, J.R., et al., An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A. EMBO J, 2004. 23(7): p. 1506-15.
20. Tomishige, M., D.R. Klopfenstein, and R.D. Vale, Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science, 2002. 297(5590): p. 2263-7.
21. Wagner, O.I., et al., Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A, 2009. 106(46): p. 19605-10.
22. Hollenbeck, P.J., The pattern and mechanism of mitochondrial transport in axons. Front Biosci, 1996. 1: p. d91-102.
23. Rogers, S.L., et al., Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. Proc Natl Acad Sci U S A, 1997. 94(8): p. 3720-5.
24. Wu, X., et al., Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function In vivo. J Cell Biol, 1998. 143(7): p. 1899-918.
25. Welte, M.A., et al., Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell, 1998. 92(4): p. 547-57.
26. Horvitz, H.R. and J.E. Sulston, Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics, 1980. 96(2): p. 435-54.
27. Hoskins, R., et al., The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development, 1996. 122(1): p. 97-111.
28. Anderson, J.M., Cell signalling: MAGUK magic. Curr Biol, 1996. 6(4): p. 382-4.
29. Caruana, G., Genetic studies define MAGUK proteins as regulators of epithelial cell polarity. Int J Dev Biol, 2002. 46(4): p. 511-8.
30. Hsueh, Y.P., The role of the MAGUK protein CASK in neural development and synaptic function. Curr Med Chem, 2006. 13(16): p. 1915-27.
31. Setou, M., et al., Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science, 2000. 288(5472): p. 1796-802.
32. Olsen, O., et al., Synaptic transmission regulated by a presynaptic MALS/Liprin-alpha protein complex. Curr Opin Cell Biol, 2006. 18(2): p. 223-7.
33. Olsen, O., et al., Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex. J Cell Biol, 2005. 170(7): p. 1127-34.
34. Zhen, M. and Y. Jin, The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature, 1999. 401(6751): p. 371-5.
35. Miller, K.E., et al., Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles. Curr Biol, 2005. 15(7): p. 684-9.
36. Samuels, B.A., et al., Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron, 2007. 56(5): p. 823-37.
37. Hanada, T., et al., GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J Biol Chem, 2000. 275(37): p. 28774-84.
38. Asaba, N., et al., Direct interaction with a kinesin-related motor mediates transport of mammalian discs large tumor suppressor homologue in epithelial cells. J Biol Chem, 2003. 278(10): p. 8395-400.
39. Yamada, K.H., T. Hanada, and A.H. Chishti, The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry, 2007. 46(35): p. 10039-45.
40. Shin, H., et al., Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha. J Biol Chem, 2003. 278(13): p. 11393-401.
41. Schnapp, B.J., Trafficking of signaling modules by kinesin motors. J Cell Sci, 2003. 116(Pt 11): p. 2125-35.
42. Van Criekinge, W. and R. Beyaert, Yeast Two-Hybrid: State of the Art. Biol Proced Online, 1999. 2: p. 1-38.
43. Gietz, R.D. and R.H. Schiestl, Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast, 1991. 7(3): p. 253-63.
44. Gietz, R.D., et al., Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast, 1995. 11(4): p. 355-60.
45. Li, B. and S. Fields, Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J, 1993. 7(10): p. 957-63.
46. Bartel, P., et al., Elimination of false positives that arise in using the two-hybrid system. Biotechniques, 1993. 14(6): p. 920-4.
47. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
48. Ferguson, E.L. and H.R. Horvitz, Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics, 1985. 110(1): p. 17-72.
49. Kumar, J., et al., The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet, 2010. 6(11): p. e1001200.
50. Kocsis, E., et al., Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J Struct Biol, 1991. 107(1): p. 6-14.
51. Koushika, S.P., et al., Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J Neurosci, 2004. 24(16): p. 3907-16.
52. Li, J., et al., The FHA domain mediates phosphoprotein interactions. J Cell Sci, 2000. 113 Pt 23: p. 4143-9.
53. Tavares, G.A., E.H. Panepucci, and A.T. Brunger, Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Mol Cell, 2001. 8(6): p. 1313-25.
54. Nix, S.L., et al., hCASK and hDlg associate in epithelia, and their src homology 3 and guanylate kinase domains participate in both intramolecular and intermolecular interactions. J Biol Chem, 2000. 275(52): p. 41192-200.
55. Reese, M.L., et al., The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a. Nat Struct Mol Biol, 2007. 14(2): p. 155-63.
56. Kanamarlapudi, V., Centaurin-alpha1 and KIF13B kinesin motor protein interaction in ARF6 signalling. Biochem Soc Trans, 2005. 33(Pt 6): p. 1279-81.
57. Wu, H., et al., Intramolecular interactions regulate SAP97 binding to GKAP. EMBO J, 2000. 19(21): p. 5740-51.
58. Paarmann, I., et al., Formation of complexes between Ca2+.calmodulin and the synapse-associated protein SAP97 requires the SH3 domain-guanylate kinase domain-connecting HOOK region. J Biol Chem, 2002. 277(43): p. 40832-8.
59. Masuko, N., et al., Interaction of NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase protein, with calmodulin and PSD-95/SAP90. A possible regulatory role in molecular clustering at synaptic sites. J Biol Chem, 1999. 274(9): p. 5782-90.
60. Muller, M.J., S. Klumpp, and R. Lipowsky, Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc Natl Acad Sci U S A, 2008. 105(12): p. 4609-14.
61. Soppina, V., et al., Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc Natl Acad Sci U S A, 2009. 106(46): p. 19381-6.
62. Ou, C.Y., et al., Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell, 2010. 141(5): p. 846-58.