簡易檢索 / 詳目顯示

研究生: 許哲銘
Hsu, Che Ming
論文名稱: 開發先進金屬合金應用於SOFC連接板
Development of advanced metallic alloys for SOFC interconnect application
指導教授: 葉安洲
Yeh, An Chou
張士欽
Chang, Shih Chin
口試委員: 劉建國
熊惟甲
葉均蔚
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 82
中文關鍵詞: 固態氧化物燃料電池連接板合金設計金屬材料
外文關鍵詞: solid oxide fuel cell, interconnect, alloy design, metallic materials
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係使用Thermo-Calc及CALPHAD-base JMatPro兩款熱力學模擬軟體,並搭配真空電弧熔煉(VAM)開發出三組具應用於固態氧化物燃料電池(SOFCs)金屬連結板(metallic interconnect)潛力之合金材料:鎳基CMH-1、鎳鐵基CMH-2、與鐵基CMH-3。三組特殊設計之合金將參考固態氧化物燃料電池連結板實際運作之條件進行綜合性評估,探討實際應用之可能性。實驗內容包含800 °C下之熱差分析(DTA)、高溫相穩定測試、抗氧化能力試驗、面積比電阻量測(ASR)、熱膨脹行為探討(CTE)、高溫硬度潛變分析、及鉻揮發趨勢。同時,兩款商用連結板鐵基材料:Crofer 22H與ZMG232 G10,將作為本研究之參考組。
    綜合結果顯示,CMH-1及CMH-2具相對優秀之高溫機性性質、低面積比電阻、低鉻揮發趨勢,CMH-3則具良好之低熱膨脹行為、高抗氧化能力。三組特殊設計之合金材料皆表現出適合應用於固態氧化物燃料電池金屬連結板之性質。


    Three advanced high temperature alloys, a Ni-based (CMH-1), a Ni-Fe based (CMH-2), and a Fe-based (CMH-3) alloys have been developed with the assistance of Thermo-Calc and CALPHAD-base JMatPro simulation software, and practically fabricated by vacuum arc melting (VAM) to be potentially used as SOFC interconnect materials. These newly designed alloys have been comprehensively evaluated with respect to their differential thermal analysis, phase stability, oxidation resistance, area specific resistance (ASR), coefficient of thermal expansion (CTE), hardness creep test, and degree of Cr evaporation behavior at 800 °C. Experimental results have been compared to those of widely used commercial Fe-based ferrite alloys, Crofer 22H and ZMG232 G10.
    Research results illustrate these novel alloys have exhibited well-balanced properties with excellent microstructure stability at 800 °C. Ni-based (CMH-1) and Ni-Fe based (CMH-2) alloys have shown better mechanical strength, lower ASR and lower degree of Cr poisoning at elevated temperature, and Fe-based (CMH-3) alloy has exhibited lower thermal expansion and better oxidation resistance in comparison to Fe-based commercial materials.

    Abstract I 摘要 II Acknowledgement III Table of Contents IV List of Figures VI List of Tables X 1 Introduction 1 2 Literature Review 3 2.1 Fuel cell 3 2.2 Solid oxide fuel cells (SOFCs) 6 2.2.1 Properties of SOFCs: 8 2.2.2 Anode 9 2.2.3 Cathode 10 2.2.4 Electrolyte 11 2.2.5 Interconnect 12 2.3 Area specific resistance (ASR) 15 2.4 Coefficient of thermal expansion (CTE) 16 2.5 Cr-evaporation 18 2.6 Creep resistance 20 3 Material Selections and Experimental Methods 22 3.1 Alloy design 22 3.2 Experimental procedure 29 3.3 Sample preparation and heat treatment 30 3.4 Oxidation test 32 3.5 Phase stability test 32 3.6 ASR measurement 33 3.7 CTE measurement 33 3.8 High temperature creep analysis 34 3.9 Cr-evaporation test 35 4 Results and Discussion 36 4.1 Microstructures and phase stability 36 4.2 Oxidation resistance 42 4.3 Area specific resistance (ASR) 51 4.4 Coefficient of thermal expansion (CTE) 58 4.5 Hardness creep analysis 60 4.6 Cr-evaporation behavior 63 5 Conclusions 66 6 Appendix 67 6.1 Alloy design of DPSS 67 6.2 Heat treatment on DPSS 69 6.3 Microstructure observation & CTE evaluation 70 7 Future work 74 8 Reference 75

    [1] S.C. Singhal, Abstr Pap Am Chem S, 228 (2004) U653-U653.
    [2] S.C. Singhal, Solid State Ionics, 135 (2000) 305-313.
    [3] A.B. Stambouli, E. Traversa, Renewable and Sustainable Energy Reviews, 6 (2002) 433-455.
    [4] O. Yamamoto, Electrochimica Acta, 45 (2000) 2423-2435.
    [5] N.H. Behling, Chapter 6 - History of Solid Oxide Fuel Cells, in: N.H. Behling (Ed.) Fuel Cells, Elsevier, 2013, pp. 223-421.
    [6] F. Birol, Aust Econ Rev, 39 (2006) 190-195.
    [7] L. Blum, W.A. Meulenberg, H. Nabielek, R. Steinberger-Wilckens, Int J Appl Ceram Tec, 2 (2005) 482-492.
    [8] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Prog Mater Sci, 72 (2015) 141-337.
    [9] J. Patakangas, Y. Ma, Y. Jing, P. Lund, Journal of Power Sources, 263 (2014) 315-331.
    [10] A.B. Stambouli, Renewable and Sustainable Energy Reviews, 15 (2011) 4507-4520.
    [11] W. Qu, L. Jian, J.M. Hill, D.G. Ivey, Journal of Power Sources, 153 (2006) 114-124.
    [12] V. Liso, A.C. Olesen, M.P. Nielsen, S.K. Kær, Energy, 36 (2011) 4216-4226.
    [13] Z.P. Shao, S.M. Haile, Nature, 431 (2004) 170-173.
    [14] H.R. Ellamla, I. Staffell, P. Bujlo, B.G. Pollet, S. Pasupathi, Journal of Power Sources, 293 (2015) 312-328.
    [15] L. Barelli, G. Bidini, F. Gallorini, P.A. Ottaviano, International Journal of Hydrogen Energy, 38 (2013) 354-369.
    [16] I. Frenzel, A. Loukou, D. Trimis, F. Schroeter, L. Mir, R. Marin, B. Egilegor, J. Manzanedo, G. Raju, M. de Bruijne, R. Wesseling, S. Fernandes, J.M.C. Pereira, G. Vourliotakis, M. Founti, O. Posdziech, Energy Procedia, 28 (2012) 170-181.
    [17] B.C.H. Steele*, Solid State Ionics, 134 (2000) 3-20.
    [18] R.T. Leah, N.P. Brandon, P. Aguiar, Journal of Power Sources, 145 (2005) 336-352.
    [19] B.C.H. Steele, A. Heinzel, Nature, 414 (2001) 345.
    [20] J.W. Fergus, Materials Science and Engineering: A, 397 (2005) 271-283.
    [21] K. Fritscher, C. Leyens, M. Peters, Materials Science and Engineering: A, 190 (1995) 253-258.
    [22] P.D. Jablonski, D.E. Alman, International Journal of Hydrogen Energy, 32 (2007) 3705-3712.
    [23] Z.G. Yang, K.S. Weil, D.M. Paxton, J.W. Stevenson, J Electrochem Soc, 150 (2003) A1188-A1201.
    [24] B. Hua, Y. Kong, W. Zhang, J. Pu, B. Chi, L. Jian, Journal of Power Sources, 196 (2011) 7627-7638.
    [25] J.E. Hammer, S.J. Laney, R.W. Jackson, K. Coyne, F.S. Pettit, G.H. Meier, Oxid Met, 67 (2007) 1-38.
    [26] Z. Yang, J.S. Hardy, M.S. Walker, G. Xia, S.P. Simner, J.W. Stevenson, J Electrochem Soc, 151 (2004) A1825-A1831.
    [27] A. Nakajo, F. Mueller, J. Brouwer, J. Van herle, D. Favrat, International Journal of Hydrogen Energy, 37 (2012) 9269-9286.
    [28] M. Stanislowski, J. Froitzheim, L. Niewolak, W.J. Quadakkers, K. Hilpert, T. Markus, L. Singheiser, Journal of Power Sources, 164 (2007) 578-589.
    [29] R. Sachitanand, M. Sattari, J.-E. Svensson, J. Froitzheim, International Journal of Hydrogen Energy, 38 (2013) 15328-15334.
    [30] Z. Yang, G.-G. Xia, J.W. Stevenson, Journal of Power Sources, 160 (2006) 1104-1110.
    [31] J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad, 26 (2002) 273-312.
    [32] N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, J.P. Schillé, Jom-Us, 55 (2003) 60-65.
    [33] T. Uehara, N. Yasuda, S. Tanaka, K. Yamamura, Ecs Transactions, 35 (2011) 2591-2599.
    [34] K. Yamamura, T. Uehara, S. Tanaka, N. Yasuda, Ecs Transactions, 57 (2013) 2177-2186.
    [35] C. Asensio-Jimenez, L. Niewolak, H. Hattendorf, B. Kuhn, P. Huczkowski, L. Singheiser, W. Quadakkers, Oxid Met, 79 (2013) 15-28.
    [36] P. Kurzweil, HISTORY | Fuel Cells, in: J. Garche (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 579-595.
    [37] M. Warshay, P.R. Prokopius, Journal of Power Sources, 29 (1990) 193-200.
    [38] W.Z. Zhu, S.C. Deevi, Materials Science and Engineering: A, 362 (2003) 228-239.
    [39] J. Richter, P. Holtappels, T. Graule, T. Nakamura, L. Gauckler, Monatshefte für Chemie - Chemical Monthly, 140 (2009) 985-999.
    [40] C. Sun, U. Stimming, Journal of Power Sources, 171 (2007) 247-260.
    [41] S. Jiang, S. Chan, J Mater Sci, 39 (2004) 4405-4439.
    [42] F. Tietz, A. Mai, D. Stöver, Solid State Ionics, 179 (2008) 1509-1515.
    [43] V. Dusastre, J.A. Kilner, Solid State Ionics, 126 (1999) 163-174.
    [44] O.Z. Sharaf, M.F. Orhan, Renewable and Sustainable Energy Reviews, 32 (2014) 810-853.
    [45] N.Q. Minh, J Am Ceram Soc, 76 (1993) 563-588.
    [46] U.D.o. Energy, Fuel Cell Handbook (Seventh Edition), Office of Fossil Energy National Energy Technology Laboratory Morgantown, West Virginia 26507-0880, November 2004.
    [47] I. Antepara, I. Villarreal, L.M. Rodriguez-Martinez, N. Lecanda, U. Castro, A. Laresgoiti, Journal of Power Sources, 151 (2005) 103-107.
    [48] P. Piccardo, R. Amendola, S. Fontana, S. Chevalier, G. Caboches, P. Gannon, J Appl Electrochem, 39 (2009) 545-551.
    [49] H. Taroco, J. Santos, R. Domingues, T. Matencio, Ceramic Materials for Solid Oxide Fuel Cells, INTECH Open Access Publisher, 2011.
    [50] J.H. Zhu, S.J. Geng, D.A. Ballard, International Journal of Hydrogen Energy, 32 (2007) 3682-3688.
    [51] http://www.osakagas.co.jp/en/rd/fuelcell/sofc/sofc/img/sofc_01_img01.jpg
    [52] S.P.S. Badwal, F.T. Ciacchi, Ionics, 6 (2000) 1-21.
    [53] Y. Tanaka, A. Momma, K. Kato, A. Negishi, K. Takano, K. Nozaki, T. Kato, Energ Convers Manage, 50 (2009) 458-466.
    [54] D. Papurello, A. Lanzini, L. Tognana, S. Silvestri, M. Santarelli, Energy, 85 (2015) 145-158.
    [55] M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics, 129 (2000) 63-94.
    [56] K. Hassmann, Fuel Cells, 1 (2001) 78-84.
    [57] K. Hosoi, M. Nakabaru, Ecs Transactions, 25 (2009) 11-20.
    [58] S.W. Tao, P.I. Cowin, R. Lan, 14 - Novel anode materials for solid oxide fuel cells, in: J.A. Kilner, S.J. Skinner, S.J.C. Irvine, P.P. Edwards (Eds.) Functional Materials for Sustainable Energy Applications, Woodhead Publishing, 2012, pp. 445-477.
    [59] J.B. Goodenough, Y.-H. Huang, Journal of Power Sources, 173 (2007) 1-10.
    [60] J.W. Fergus, Solid State Ionics, 177 (2006) 1529-1541.
    [61] Y. Shirai, S.-i. Hashimoto, K. Sato, K. Yashiro, K. Amezawa, J. Mizusaki, T. Kawada, Solid State Ionics, 256 (2014) 83-88.
    [62] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Prog Mater Sci.
    [63] B.C.H. Steele, Solid State Ionics, 86–88, Part 2 (1996) 1223-1234.
    [64] F. Su, Y. Zhang, M. Ni, C. Xia, International Journal of Hydrogen Energy, 39 (2014) 2685-2691.
    [65] S. Hui, J. Roller, S. Yick, X. Zhang, C. Decès-Petit, Y. Xie, R. Maric, D. Ghosh, Journal of Power Sources, 172 (2007) 493-502.
    [66] V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics, 174 (2004) 135-149.
    [67] N. Preux, A. Rolle, R.N. Vannier, 12 - Electrolytes and ion conductors for solid oxide fuel cells (SOFCs), in: J.A. Kilner, S.J. Skinner, S.J.C. Irvine, P.P. Edwards (Eds.) Functional Materials for Sustainable Energy Applications, Woodhead Publishing, 2012, pp. 370-401.
    [68] S.P.S. Badwal, K. Foger, Ceram Int, 22 (1996) 257-265.
    [69] B.C.H. Steele, Solid State Ionics, 129 (2000) 95-110.
    [70] K.J. Yoon, C.N. Cramer, J.W. Stevenson, O.A. Marina, Journal of Power Sources, 195 (2010) 7587-7593.
    [71] K.J. Yoon, J.W. Stevenson, O.A. Marina, Journal of Power Sources, 196 (2011) 8531-8538.
    [72] W.J. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Mater High Temp, 20 (2003) 115-127.
    [73] F. Greco, H.L. Frandsen, A. Nakajo, M.F. Madsen, J. Van herle, J Eur Ceram Soc, 34 (2014) 2695-2704.
    [74] Y.-T. Chiu, C.-K. Lin, J.-C. Wu, Journal of Power Sources, 196 (2011) 2005-2012.
    [75] W.Z. Zhu, S.C. Deevi, Materials Science and Engineering: A, 348 (2003) 227-243.
    [76] P. Yang, C.-K. Liu, J.-Y. Wu, W.-J. Shong, R.-Y. Lee, C.-C. Sung, Journal of Power Sources, 213 (2012) 63-68.
    [77] Y.-T. Chiu, C.-K. Lin, Journal of Power Sources, 198 (2012) 149-157.
    [78] T. Uehara, N. Yasuda, M. Okamoto, Y. Baba, Journal of Power Sources, 196 (2011) 7251-7256.
    [79] L. Niewolak, E. Wessel, L. Singheiser, W.J. Quadakkers, Journal of Power Sources, 195 (2010) 7600-7608.
    [80] J. Wu, X. Liu, J Mater Sci Technol, 26 (2010) 293-305.
    [81] P. Huczkowski, V. Shemet, J. Piron-Abellan, L. Singheiser, W.J. Quadakkers, N. Christiansen, Materials and Corrosion, 55 (2004) 825-830.
    [82] I. Antepara, I. Villarreal, L.M. Rodríguez-Martínez, N. Lecanda, U. Castro, A. Laresgoiti, Journal of Power Sources, 151 (2005) 103-107.
    [83] Z.G. Zhang, F. Gesmundo, P.Y. Hou, Y. Niu, Corros Sci, 48 (2006) 741-765.
    [84] http://www.plansee.com/media/images/Interconnector_CFY.png
    [85] B. Buckner, H. Landes, B. Rathjen, Solid Oxide Fuel Cells, 1993
    [86] A. Petric, H. Ling, J Am Ceram Soc, 90 (2007) 1515-1520.
    [87] M. Bertoldi, T. Zandonella, D. Montinaro, V.M. Sglavo, A. Fossati, A. Lavacchi, C. Giolli, U. Bardi, Journal of Fuel Cell Science and Technology, 5 (2008) 11001-11005.
    [88] R. Lacey, A. Pramanick, J.C. Lee, J.-I. Jung, B. Jiang, D.D. Edwards, R. Naum, S.T. Misture, Solid State Ionics, 181 (2010) 1294-1302.
    [89] B. Hua, J. Pu, F. Lu, J. Zhang, B. Chi, L. Jian, Journal of Power Sources, 195 (2010) 2782-2788.
    [90] Z.G. Yang, M.S. Walker, P. Singh, J.W. Stevenson, T. Norby, J Electrochem Soc, 151 (2004) B669-B678.
    [91] W. Zhang, D. Yan, J. Yang, J. Chen, B. Chi, J. Pu, J. Li, Journal of Power Sources, 271 (2014) 25-31.
    [92] S.P. Jiang, X. Chen, International Journal of Hydrogen Energy, 39 (2014) 505-531.
    [93] A. Nakajo, F. Mueller, J. Brouwer, J. Van herle, D. Favrat, International Journal of Hydrogen Energy, 37 (2012) 9249-9268.
    [94] Y. Liu, J. Zhu, International Journal of Hydrogen Energy, 35 (2010) 7936-7944.
    [95] W.B. Li, J.L. Henshall, R.M. Hooper, K.E. Easterling, Acta Metallurgica et Materialia, 39 (1991) 3099-3110.
    [96] G. Sharma, R.V. Ramanujan, T.R.G. Kutty, G.P. Tiwari, Materials Science and Engineering: A, 278 (2000) 106-112.
    [97] K.B. Khan, T.R.G. Kutty, M.K. Surappa, Materials Science and Engineering: A, 427 (2006) 76-82.
    [98] K. Cheng, C. Jo, T. Jin, Z. Hu, J Alloy Compd, 509 (2011) 7078-7086.
    [99] J.W. Elmer, T.A. Palmer, E.D. Specht, Materials Science and Engineering: A, 459 (2007) 151-155.
    [100] Y. Wang, S. Ohnuki, S. Hayashi, T. Narita, Mater Trans, 48 (2007) 526-530.
    [101] S. Takemoto†, H. Nitta‡, Y. Iijima§, Y. Yamazaki, Philos Mag, 87 (2007) 1619-1629.
    [102] H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu, Y. Iijima, Acta Mater, 50 (2002) 4117-4125.
    [103] G.F. Chen, H.Y. Lou, Mater Lett, 45 (2000) 286-291.
    [104] D.W. Yun, H.S. Seo, J.H. Jun, J.M. Lee, K.Y. Kim, International Journal of Hydrogen Energy, 37 (2012) 10328-10336.
    [105] D.W. Yun, H.S. Seo, J.H. Jun, J.M. Lee, D.H. Kim, K.Y. Kim, International Journal of Hydrogen Energy, 36 (2011) 5595-5603.
    [106] L. Kaufman, H. Nesor, Metall Trans, 5 (1974) 1617-1621.
    [107] T. Uehara, N. Yasuda, M. Okamoto, C. Aoki, T. Ohno, A. Toji, Ecs Transactions, 25 (2009) 1455-1462.
    [108] P. Huczkowski, in, Fakultät für Maschinenwesen, 2005, pp. 130-135.
    [109] W.-J. Wang, in, National Tsing Hua University, Taiwan, 2013, pp. 158-163.
    [110] M.B. Toloczko, J.P. Hirth, F.A. Garner, J Nucl Mater, 283–287, Part 1 (2000) 409-413.
    [111] F.C. Hull, S.K. Hwang, J.M. Wells, R.I. Jaffee, J. Mater. Eng., 9 (1987) 81-92.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE