簡易檢索 / 詳目顯示

研究生: 林子翔
Lin, Zi-Xiang
論文名稱: 介電泳奈米線精密組裝及其應用於有機揮發氣體感測器之開發
Precise Assembly of Nanowires Based on Dielectrophoresis and Its Applications in Volatile Organic Compounds Sensors
指導教授: 洪健中
口試委員: 洪健中
黃國柱
林志中
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 110
中文關鍵詞: 介電泳奈米線有機揮發氣體氣體感測器
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用介電泳方式組裝奈米線於微流體晶片內之微電極間隙,首先利用微電極形狀與微流體流速可精準組裝單根或多根奈米線感測器,也設計混成組裝方式形成複合式金屬奈米線與光電半導體奈米線之感測器,並利用局部電場燒結提升感測器性能,最後應用於有機揮發氣體感測。以介電泳方式組裝奈米材料,其優點為不需要繁複的前處理步驟、可在室溫下操縱組裝奈微米材料、只需超微量奈米線溶液,因此在製作和操控上都相當的便利省時;但利用介電泳方式組裝奈米材料,其缺點為準確度較難以控制,因此本研究設計不同微電極結構,探討介電泳奈米線組裝之行為,以達到介電泳奈米線精密組裝,並進一步以電燒結與混成奈米線提升其性能。
    在介電泳組裝奈米材料製程上,本研究對於各種介電泳參數做了一系列的探討:奈米材料、溶劑、外加電場頻率、流速、電極形狀,以及利用混成方式輔助奈米線之組裝。在不同的奈米材料與溶劑中,其介電性質與導電度會直接影響介電泳的模式。而在不同的外加電場頻率與流速中,隨著外加電場頻率與流速增加,其奈米線組裝數量會減少,其中在一般式電極當中,電極間距10 μm其組裝的誤差與穩定度比電極間距20 μm來的好。而在手指式電極當中,適當地調整外加電場頻率與流速,可使每個微電極尖端上組裝單一根奈米線,達到介電泳奈米線精密組裝。另外,本論文研究所提出的混成方式輔助奈米線之組裝,可在較大間距微電極下製作出最小達100 nm奈米線間隙之結構,再將短奈米線接於此間隙,可以避免傳統製作奈米電極之昂貴且繁複的電子束微影製程。本研究並進一步探討局部電燒結對降低奈米線間之能障與提升電性之影響。
    本論文研究開發之介電泳晶片應用於有機揮發氣體之感測上,由實驗結果可知,在各式介電泳晶片當中,其中以電燒結混成式效果最佳,對於100 ppm濃度下之氨水,室溫下其靈敏度可高達28.02%電阻抗增加率,為一般形式微電極的3.68倍,偵測極限最低可達1 ppm左右,反應時間為60秒,S/N比為14.432。本研究所開發之光電式有機揮發氣體感測器,可以用紫外光來作為控制閘極,提升訊號反應,並當作切換開關以控制有機揮發氣體之感測。此開發之有機揮發氣體感測器未來有潛力應用於疾病呼吸檢測以及環境安全檢測等多方應用。


    This paper presents an improved TiO2 based vapor sensor fabricated by dielectrophoretically assembling TiO2 nanowires. Dielectrophoresis (DEP) offers the controllable, selective and massive manipulation of target nanowires. However, it is difficult to achieve precise assembly of nanowires based on dielectrophoresis. In this article we present a novel microelectrode design finger-type electrode to achieve precise assembly of nanowires based on dielectrophoresis.
    In this thesis, several important parameters including nanomaterial, solvent, AC frequency, flow rate, and the tip of electrode have been investigated systematically. In different nanomaterial or solution, the induced motion is determined by the dielectric properties and the conductivity of the nanomaterial and solution. And the number of nanowires will reduce with the increase of frequency and flow rate. In the finger-type electrodes, it could be to achieve precise assembly of nanowires based on dielectrophoresis by adjusting appropriately the DEP parameters. Furthermore, compared with the traditional electrode fabrication, electron-beam lithography, there are many the advantages of simple process, low cost, and convenience by using our novel hybrid electrode.
    According to experimental results, compared with the traditional nanowire nanosensors, our novel hybrid nanosensors after electrical sintering process exhibited higher sensitivity and lower limit of detection. The sensitivity of our novel hybrid nanosensors is 28.02% under 100 ppm concentration. The limit of detection is 1 ppm. The response time is 120 second. The S/N ratio is 14.432.With the aid of UV light, the sensor exhibits high sensitivity to vapor pollutants including NH3, acetone, and ethanol at room temperature. Our volatile organic compounds (VOCs) nanosensors is of increasing interest for a broad variety of applications in environmental safety monitoring and biomedical breath analysis.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 xiv 第一章 緒論 1 1.1 研究動機 1 1.2 奈米級操控技術 2 1.2.1 自組裝方式 2 1.2.2 光學方式 3 1.2.3 電泳 4 1.2.4 介電泳 5 1.3 研究目的與方法 7 1.4 論文架構 7 第二章 介電泳原理分析 9 2.1 介電泳原理 9 2.2 介電泳數學模型 11 2.3 極化因子對介電泳之關係 14 2.4 極化因子與外加電場頻率之關係 15 第三章 介電泳應用於奈米材料之組裝 18 3.1 介電泳應用於不同奈米材料之組裝 19 3.1.1 介電泳應用於二氧化鈦奈米線之組裝 20 3.1.2 介電泳應用於銀奈米線之組裝 25 3.1.3 介電泳應用於奈米碳管之組裝 28 3.1.4 介電泳應用於石墨烯之組裝 34 3.2 介電泳應用於二氧化鈦奈米線之精密組裝 42 3.2.1 介電泳應用於二氧化鈦奈米線組裝之參數探討 42 3.2.1.1 介電泳組裝與不同溶劑之關係 42 3.2.1.2 介電泳組裝與不同流速之關係 49 3.2.1.3 介電泳組裝與不同外加電場頻率之關係 50 3.2.1.4 介電泳組裝與不同電極間距之關係 52 3.2.2 以手指式電極控制奈米線組裝 55 3.2.3 混成方式輔助奈米線組裝 60 3.3 各式介電泳組裝奈米線之電性量測結果 63 3.3.1 阻抗量測 64 3.3.2 探針式電性量測 66 3.3.3 探針式光電流電性量測 67 3.3.4 蕭基能障與接觸阻抗之探討 69 3.4 結論 72 第四章 介電泳晶片應用於有機揮發氣體感測器 74 4.1 有機揮發氣體感測器市場需求 74 4.2 有機揮發氣體感測器感測機制 76 4.3 光電式有機揮發氣體感測器測試結果 78 4.3.1 有機揮發氣體實驗架設 78 4.3.2 不同種類有機揮發氣體測試 79 4.3.3 有機揮發氣體反應時間測試 83 4.3.4 不同濃度有機揮發氣體測試 85 4.4 結論 89 第五章 總結與未來發展 91 5.1 總結 91 5.2 本研究之學術貢獻與創新 92 5.3 未來研究建議 95 附錄 99 參考資料 102 作者簡介 108

    [1] Feynman, R.P., There's plenty of room at the bottom. Engineering and Science 1960. p. 1-3
    [2] Xu, J.Q., et al., Research and applications of biochip technologies. Chinese Science Bulletin, 2000. 45(2): p. 101-108.
    [3] Whitesides, G.M., et al., Beyond molecules : Self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(8): p. 4769-4774.
    [4] Whitesides, G.M., et al., Self-assembly at all scales. Science, 2002. 295(5564): p. 2418-2421.
    [5] Fujita, M., Metal-directed self-assembly of two- and three-dimensional synthetic receptors. Chemical Society Reviews, 1998. 27(6): p. 417-425.
    [6] Ashkin, A., et al., Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 1986. 11(5): p. 288-290.
    [7] Ashkin, A., Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(10): p. 4853-4860.
    [8] Yu, T., et al., The manipulation and assembly of CuO nanorods with line optical tweezers. Nanotechnology, 2004. 15(12): p. 1732-1736.
    [9] Reuss, F.F., Notice sur un nouvel effect de l’´electricit´e galvanique. M´emoire Soc. Sup. Imp. de Moscou, 1809. p. 1-4
    [10] Pohl, H.A., The motion and precipitation of suspensoids in divergent electric fields. Journal of Applied Physics, 1951. 22(7): p. 869-871.
    [11] Pohl, H.A., Some effects of nonuniform fields on dielectrics. Journal of Applied Physics, 1958. 29(8): p. 1182-1188.
    [12] Masuda, S., et al., Movement of blood-cells in liquid by nonuniform traveling field. IEEE Transactions on Industry Applications, 1988. 24(2): p. 217-222.
    [13] Fuhr, G., et al., Linear motion of dielectric particles and living cells in microfabricated structures induced by traveling electric-fields. IEEE Micro Electro Mechanical Systems : An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots1991, New York: I E E E. p. 259-264.
    [14] Huang, Y., et al., Electrokinetic behavior of colloidal particles in traveling electric-fileds - Studies using yeast-cells. Journal of Physics D-Applied Physics, 1993. 26(9): p. 1528-1535.
    [15] Wang, X.B., et al., A unified theory of dielectrophoresis and traveling-wave dielectrophoresis. Journal of Physics D-Applied Physics, 1994. 27(7): p. 1571-1574.
    [16] Hughes, M.P., et al., Dielectrophoretic forces on particles in travelling electric fields. Journal of Physics D-Applied Physics, 1996. 29(2): p. 474-482.
    [17] Wang, X.B., et al., Dielectrophoretic manipulation of particles. IEEE Transactions on Industry Applications, 1997. 33(3): p. 660-669.
    [18] Wang, X.B., et al., Nonuniform spatial distributions of both the magnitude and phase of AC electric-fields determine dielectrophoretic forces. Biochimica Et Biophysica Acta-General Subjects, 1995. 1243(2): p. 185-194.
    [19] Avouris, P., et al., Nanotube electronics and optoelectronics. Materials Today, 2006. 9(10): p. 46-54.
    [20] Star, A., et al., Nanotube optoelectronic memory devices. Nano Letters, 2004. 4(9): p. 1587-1591.
    [21] Stokes, P., et al., Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis. Nanotechnology, 2008. 19(17): p. 1-6.
    [22] Goldberger, J., et al., ZnO nanowire transistors. Journal of Physical Chemistry B, 2005. 109(1): p. 9-14.
    [23] Kwon, Y., et al., Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel. Applied Physics Letters, 2004. 84(14): p. 2685-2687.
    [24] Chu, Y.M., et al., TiO2 nanowire FET device : Encapsulation of biomolecules by electro polymerized pyrrole propylic acid. Biosensors & Bioelectronics, 2011. 26(5): p. 2334-2340.
    [25] Ishii, M., et al., Characterization of field effect transistor with TiO2 nanotube channel fabricated by dielectrophoresis, in 3rd International Congress on Ceramics2011, Iop Publishing Ltd: Bristol.
    [26] Xia, F.N., et al., Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Letters, 2010. 10(2): p. 715-718.
    [27] Wang, Z.X., et al., A high-performance top-gate graphene field-effect transistor based frequency doubler. Applied Physics Letters, 2010. 96(17): p. 1-3
    [28] Cheng, C.D., et al., Self-assembly of metallic nanowires from aqueous solution. Nano Letters, 2005. 5(1): p. 175-178.
    [29] Graf, D., et al., Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Letters, 2007. 7(2): p. 238-242.
    [30] Burg, B.R., et al., Dielectrophoretic integration of single- and few-layer graphenes. Journal of Applied Physics, 2010. 107(3): p. 1-6.
    [31] Chang, B.Y., et al., Electrochemical Impedance Spectroscopy, in Annual Review of Analytical Chemistry, Vol 3, E.S. Yeung and R.N. Zare, Editors. 2010, Annual Reviews: Palo Alto. p. 207-229.
    [32] Li, X.P., et al., Fabrication and integration of metal oxide nanowire sensors using dielectrophoretic assembly and improved post-assembly processing. Sensors and Actuators B-Chemical, 2010. 148(2): p. 404-412.
    [33] Dockendorf, C.P.R., et al., Individual carbon nanotube soldering with gold nanoink deposition. Applied Physics Letters, 2007. 90(19): p. 1-3.
    [34] Sun, L.Y., et al., Investigation of a new catalytic combustion-type CH4 gas sensor with low power consumption. Sensors and Actuators B-Chemical, 2000. 66(1-3): p. 289-292.
    [35] Han, C.H., et al., Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED. Sensors and Actuators B-Chemical, 2007. 125(1): p. 224-228.
    [36] Kobayashi, T., et al., Thin-films of supported gold catalysts for CO detection. Sensors and Actuators B-Chemical, 1990. 1(1-6): p. 222-225.
    [37] Minico, S., et al., Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts. Applied Catalysis B-Environmental, 2000. 28(3-4): p. 245-251.
    [38] Lin, K.W., et al., A novel Pd/oxide/GaAs metal-insulator-semiconductor field-effect transistor (MISFET) hydrogen sensor. Semiconductor Science and Technology, 2001. 16(12): p. 997-1001.
    [39] Zhao, S.Q., et al., A high performance ethanol sensor based on field-effect transistor using a LaFeO3 nano-crystalline thin-film as a gate electrode. Sensors and Actuators B-Chemical, 2000. 64(1-3): p. 83-87.
    [40] Srivastava, A.K., Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network. Sensors and Actuators B-Chemical, 2003. 96(1-2): p. 24-37.
    [41] Bie, L.J., et al., Nanopillar ZnO gas sensor for hydrogen and ethanol. Sensors and Actuators B-Chemical, 2007. 126(2): p. 604-608.
    [42] Chen, J., et al., α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Advanced Materials, 2005. 17(5): p. 582-586.
    [43] Karunagaran, B., et al., TiO2 thin film gas sensor for monitoring ammonia. Materials Characterization, 2007. 58(8-9): p. 680-684.
    [44] Dejous, C., et al., A surface-acoustic-wave gas sensor - detection of organophosphorus compounds. Sensors and Actuators B-Chemical, 1995. 24(1-3): p. 58-61.
    [45] Zhang, J., et al., ITO thin films coated quartz crystal microbalance as gas sensor for NO detection. Sensors and Actuators B-Chemical, 2002. 87(1): p. 159-167.
    [46] Li, R., et al., Bidirectional mediation of TiO2 nanowires field effect transistor by dipole moment from purple membrane. Nanoscale, 2010. 2(8): p. 1474-1479.
    [47] Zhang, C., et al., Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles. Microfluidics and Nanofluidics, 2009. 7(5): p. 633-645.
    [48] Papadakis, S.J., et al., Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. Nanoscale, 2011. 3(3): p. 1059-1065.
    [49] Seo, M.H., et al., Detection of organic gases using TiO2 nanotube-based gas sensors, in Proceedings of the Eurosensors Xxiii Conference, J. Brugger and D. Briand, Editors. 2009, Elsevier Science Bv: Amsterdam. p. 192-195.
    [50] Lin, S.W., et al., A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sensors and Actuators B-Chemical, 2011. 156(2): p. 505-509.
    [51] Kim, I.D., et al., Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Letters, 2006. 6(9): p. 2009-2013.
    [52] Varghese, O.K., et al., Hydrogen sensing using titania nanotubes. Sensors and Actuators B-Chemical, 2003. 93(1-3): p. 338-344.
    [53] Park, H., et al., Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO2 and Pt/TiO2. Journal of Physical Chemistry B, 2003. 107(16): p. 3885-3890.
    [54] He, C., et al., Influence of silver doping on the photocatalytic activity of titania films. Applied Surface Science, 2002. 200(1-4): p. 239-247.
    [55] Li, X.Z., et al., Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science & Technology, 2001. 35(11): p. 2381-2387.
    [56] Tada, M., et al., A new water-soluble ammonium citratoperoxotitanate as an environmentally beneficial precursor for TiO2 thin films and RuO2/BaTi4O9 photocatalysts. Chemistry of Materials, 2002. 14(7): p. 2845-2846.
    [57] Papp, J., et al., Titanium(IV) oxide photocatalysts with palladium. Chemistry of Materials, 1993. 5(3): p. 284-288.
    [58] Righettoni, M., et al., Toward portable breath acetone analysis for diabetes detection. Journal of Breath Research, 2011. 5(3): p.1-6
    [59] Mazzone, P.J., Exhaled breath volatile organic compound biomarkers in lung cancer. Journal of Breath Research, 2012. 6(2): p. 1-8.
    [60] Lin, Y.J., et al., Application of the electronic nose for uremia diagnosis. Sensors and Actuators B-Chemical, 2001. 76(1-3): p. 177-180.
    [61] DuBois, S., et al., Breath ammonia testing for diagnosis of hepatic encephalopathy. Digestive Diseases and Sciences, 2005. 50(10): p. 1780-1784.
    [62] Ishida, H., et al., The breath ammonia measurement of the hemodialysis with a QCM-NH3 sensor. Bio-Medical Materials and Engineering, 2008. 18(2): p. 99-106.
    [63] Zan, H.W., et al., Pentacene-based organic thin film transistors for ammonia sensing. IEEE Sensors Journal, 2012. 12(3): p. 594-601.
    [64] Tangerman, A., et al., A new sensitive assay for measuring volatile sulfur-compounds in human breath by tenax trapping and gas-chromatography and its application in liver-cirrhosis. Clinica Chimica Acta, 1983. 130(1): p. 103-110.
    [65] Rizzo, A.A., Possible role of hydrogen sulfide in human periodontal disease .I. Hydrogen sulfide production in periodontal pockets. Periodontics, 1967. 5(5): p. 233-234.
    [66] Pavlou, A.K., et al., An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro. Biosensors & Bioelectronics, 2000. 15(7-8): p. 333-342.
    [67] Dattoli, E. N., et al., Tin oxide nanowire sensor with integrated temperature and gate control for multi-gas recognition. Nanoscale, 2012. 4(4): p.1760-1769. 

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE