研究生: |
洪敏修 Hung, Min-Hsiu |
---|---|
論文名稱: |
矽化鐵錳奈米結構的合成與性質研究 Synthesis and Properties of Fe1-xMnxSi Nanostructures |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
鄭紹良
Cheng, Shao-Liang 許薰丰 Hsu, Hsun-Feng 吳文偉 Wu, Wen-Wei 葉炳宏 Yeh, Ping-hung 陳力俊 Chen, Lih-Juann |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 矽化鐵錳 、奈米線 、磁性半導體 、鐵磁 、自旋不規則 、磁阻 |
外文關鍵詞: | Fe1-xMnxSi, nanowires, magnetic semiconductor, ferromagnetic, spin-disorder, magnetoresistance |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中,透過化學氣相蒸鍍以單一步驟成功合成出具有室溫鐵磁特性和高長寬比矽化鐵錳奈米線。這是最先將磁性的錳粒子添加進主結構中以部分取代的方式形成三元的矽化物的成果。合成出的矽化鐵錳奈米線在磁特性的表現上有優異的行為,除了室溫鐵磁還具備有極高的磁阻變化。鐵奈米線在磁化量對外加磁場的關係圖當中,可發現磁滯特性在10K到300K的溫度熱擾下,受影響程度相當的小,顯示出材料的強鐵磁特色,導因於磁性錳粒子的添加取代。磁阻特性在25K時可以得到最佳的結果,當錳含量為12%的奈米線在磁場9特斯拉與25K的環境下可以得到負41.6%的阻率變化,相較於其他的磁性矽化物奈米線高出許多。
High-aspect-ratio Fe1-xMnxSi nanowires with room-temperature ferromagnetism were synthesized by a chemical vapor deposition method in one step. This is the first report of ternary silicide nanowires using magnetic Mn ions to partially replace metal sites in the host matrix. Excellent magnetic characteristics of Fe1-xMnxSi nanowires, which exhibit strong ferromagnetism at room temperature and high magnetoresistance variation, were found. The magnetization versus magnetic field curves of Fe1-xMnxSi nanowires is much less sensitive to the temperature variation from 10 K to 300 K than those of FeSi nanowires. Remarkably, the excellent MR performance, -41.6% at 25 K with a magnetic field of 9 T, was demonstrated for an individual Fe0.88Mn0.12Si nanowire.
References
Chapter 1
1. Feynman, R. P. There’s Plenty of Room at the Bottom. Eng. Sci. 1960, 23, 22-36.
2. Taniguchi, N. On the Basic Concept of Nanotechnology. Proc. Intl. Conf. Prod, Part Ⅱ, 1984, 18-23.
3. Drexler, K. E. The Coming Era of Nanotechnology. Doubleday, London, 1986.
4. Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933-937.
5. Krans, J. M.; Rutenbeek, J. M. V.; Jongh, L. J. D. The Signature of Conductance Quantization in Metallic Point Contacts. Nature 1995, 375, 767-768.
6. Leobandung, E.; Guo, L.; Wang, Y.; Chou, S. Y. Observation of Quantum Effects and Coulomb Blockade in Silicon Quantum Dot Transistors at Temperature over 100K. Appl. Phys. Lett. 1995, 67, 938-940.
7. Markovich, G.; Collier, C. P.; Heath J. R. Architectonic Quantum Dot Solids. Acc. Chem. Res. 1999, 32, 415-423.
8. Papadopoulos, C.; Rakitin, A.; Li, J.; Vedeneev, A. S.; Xu, J. M. Electronic Transport in Y-Junction Carbon Nanotubes. Phys. Rev. Lett. 2000, 85, 3476-3479.
9. Bjork, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. Nanowire Resonant Tunneling Diodes. Appl. Phys. Lett. 2002, 81, 4458-4460.
10. Hah, J. H.; Mayya, S.; Hata, M.; Jang, Y. K.; Kim, H. W.; Ryoo, M.; Woo, S. G.; Cho, H. K.; Moon, J. T. Converging Lithography by Combination of Electrostatic Layer by Layer Self-assembly and 193 nm Photolithography: Top-down Meets Bottom-up,” J. Vac. Sci. Technol. B. 2006, 24, 2209-2213.
11. Chen, K. C.; Wu, W. W.; Liao C. N., Chen, L. J.; Tu, K. N. Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science 2008, 321, 1066-1069.
12. Zhong, Z.; Wang, D.; Cui, Y.; Bockrath, M. W.; Leiber, C. M. Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems. Science 2003, 302, 1377-1379.
13. Chen, L. J. Metal Silicides: an Integral Part of Microelectronics. JOM 2005, 57 (9), 24-30.
14. Ko, H. et al. Ultrathin Compound Semiconductor on Insulator Layers for High-Performance Nanoscale Transistors. Nature 2010, 468, 286-289.
15. Hahn, C.; Zhang, Z.; Fu, A.; Wu, C. H.; Hwang, Y. J.; Gargas, D. J.; Yang, P. Epitaxial Growth of InGaN Nanowire Arrays for Light Emitting Diodes. ACS Nano 2011, 5, 3970-3976.
16. Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced Thermoelectric Performance of Rough Silicon Nanowires. Nature 2008, 451, 163-167.
17. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of Semiconducting Oxides. Science 2001, 291, 1947-1949.
18. Morales A. M.; Lieber, C. M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 1998, 279, 208-211.
19. Iijima, S. Helical Microtube of Graphitic Carbon. Nature 1991, 354, 56-58.
20. Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smithn, D. C.; Lieber, C. M. Growth of Nanowires Superlattice Structures for Nanoscale and Electronics. Nature 2002, 415, 617-620.
21. Schmid, G.; Lifeng, F. C. Metal Clusters and Colloids. Adv. Mater. 1998, 10, 515-526.
22. Yang, P.; Wu, Y.; Fan, R. Inorganic Semiconductor Nanowires. Inter. J. Nano. 2002, 1, 1-39. 15.
23. Wu, Y.; Yan, H.; Huang, M.; Messer, B.; Song, J. H.; Yang, P. Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties. Chem. Eur. J. 2002, 8, 1260-1268.
24. Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Carbon Nanotube Intramolecular Logic Gates. Nature 1999, 402, 273-276.
25. Tans, S. J.; Verschueren, R. M.; Dekker, C. Room Temperature Transistor Based on a Single Carbon Nanotube. Nature 1998, 393, 49-52.
26. Derycke, V.; Martel, R.; Appenzaller, J.; Avouis, P. Carbon Nanotube Inter and Intramolecular Logic Gates. Nano Lett. 2001, 1, 453-456.
27. He, Jr H.; Hsin, C. L.; Liu, L.; Chen, L. J.; Wang, Z. L. Piezoelectric Gated Diode of a Single ZnO Nanowire. Adv. Mater. 2007, 19, 781-784.
28. Lee, C. Y.; Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.; Chen. L. J. Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties. J. Phys. Chem. C 2009, 113, 2286-2289.
29. Tsai, C. I.; Yeh, P. H., Wang, C. Y.; Wu, H. W.; Chen, U. S.; Lu, M. Y.; Wu, W. W.; Chen, L. J.; Wang, Z. L. Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties. Cryst. Growth Des. 2009, 9, 4514-4518.
30. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett., 1964, 4, 89-90.
31. Westwater; Gosain, D. P.; Tomiya, S.; Usui, S. Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction. J. Vac. Sci. Technol. B 1997, 15, 554-557.
32. Wu, Y. Y.; Yang, P. D. Germanium Nanowire Growth via Simple Vapor Transport. Chem. Mater. 2000, 12, 605-607.
33. Chen, C. C.; Yeh, C. C.; Chen, C. H.; Yu, M. Y.; Liu, H. L.; Wu, J. J.; Chen, K. H.; Chen, L. C.; Peng, J. Y.; Chen, Y. F. Catalytic Growth and Characterization of Gallium Nitride Nanowires. J. Am. Chem. Soc. 2001, 123, 2791-2798.
34. Wu, Z. H.; Mei, X. Y.; Kim, D.; Blumin, M.; Ruda, H. E. Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by Molecular-Beam Epitaxy. Appl. Phys. Lett. 2002, 81, 5177-5179.
35. Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. Nature 2001, 409, 66-69.
36. Wang, Y. W.; Zhang, L. D.; Liang, C. H.; Wang, G. Z.; Peng, X. S. Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires. Chem. Phys. Lett., 2002, 357, 314-318.
37. Wu, X. C.; Tao, Y. R. Growth of CdS Nanowires by Physical Vapor Deposition. J. Cryst. Growth 2002, 242, 309-312.
38. Huang, M. H.; Wu, Y. Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. D. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater. 2001, 13, 113-116.
39. Yu, D. P.; Hang, Q. L.; Ding, Y.; Zhang, H. Z.; Bai, Z. G.; Wang, J. J.; Zou, Y. H.; Qian, W.; Xiong, G. C.; Feng, S. Q. Amorphous Silica Nanowires: Intensive Blue Light Emitters. Appl. Phys. Lett. 1998, 73, 3076-3078.
40. Lee, K. H.; Lee, S. W.; Vanfleet, R. R.; Sigmund, W. Amorphous Silica Nanowires Grown by the Vapor-solid Mechanism. Chem. Phys. Lett. 2003, 376, 498-503.
41. Johnson, M. C.; Lee, C. J.; Bourret-Courchesne, E. D.; Konsek, S. L.; Aloni, S.; Han, W. Q.; Zettl, A. Growth and Morphology of 0.80 eV Photoemitting Indium Nitride Nanowires. Appl. Phys. Lett. 2004, 85, 5670-5672.
42. Yang, Y. H.; Wang, C. X.; Wang, B.; Xu, N. S.; Yang, G. W. ZnO Nanowire and Amorphous Diamond Nanocomposites and Field Emission Enhancement. Chem. Phys. Lett. 2005, 403, 248-251.
43. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of Semiconducting Oxides. Science 2001, 291, 1947-1949.
44. Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Lee, S. T. Nucleation and Growth of Si Nanowires from Silicon Oxide. Phys. Rev. B 1998, 58, R16024-R16026.
45. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-liquid-solid Growth. Science 1995, 270, 1791-1794.
46. Moissan, H. "The electric furnace." (English transl. by A. de Mouilpied) Edward Arnold, London, 1904.
47. Higgins, J. M.; Ding, R.; DeGrave, J. P.; Jin, S. Signature of Helimagnetic Ordering in Single-Crystal MnSi Nanowires. Nano Lett. 2010, 10, 1605-1610.
48. Seo, K.; Yoon, H.; Ryu, S. W.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Choi, Y. K.; Kim, B. Itinerant Helimagnetic Single-Crystalline MnSi Nanowires. ACS Nano 2010, 4, 2569-2576.
49. Seo, K.; Varadwaj, K. S. K.; Mohanty, P.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B. Magnetic Properties of Single-Crystalline CoSi Nanowires. Nano Lett. 2007, 7, 1240-1245.
50. Schmitt, A. L.; Higgins, J. M.; Jin, S. Chemical Synthesis and Magnetotransport of Magnetic Semiconducting Fe1-xCoxSi Alloy Nanowires. Nano Lett. 2008, 8, 810-815.
51. Ouyang, L.; Thrall, E. S.; Deshmukh, M. M.; Park, H. Vapor-Phase Synthesis and Characterization of ε-FeSi Nanowires. Adv. Mater. 2006, 18, 1437-1440.
52. Hung, S. W.; Wang, T. T. J.; Chu, L. W.; Chen, L. J. Orientation-Dependent Room-Temperature Ferromagnetism of FeSi Nanowires and Applications in Nonvolatile Memory Devices. J. Phys. Chem. C 2011, 115, 15592-15597.
53. In, J.; Varadwaj, K. S. K.; Seo, K.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B. Single-Crystalline Ferromagnetic Fe1-xCoxSi Nanowires. J. Phys. Chem. C 2008, 112, 4728-4275.
54. Zhou F.; Szczech J.; Pettes, M. T.; Moore, A. L.; Jin, S.; Shi, Li Determination of Transport Properties in Chromium Disilicide Nanowires via Combined Thermoelectric and Structural Characterizations. Nano Lett. 2007, 7, 1649-1654.
55. Schlesinger, Z.; Fisk, Z.; Zhang, H. T.; Maple, M. B. Is FeSi a Kondo Insulator?. J. Phys. B-At. Mol. Opt. Phys. 1997, 13, 460-462.
56. Paschen, S.; Felder, E.; Chernikov, M. A.; Degiorgi, L.; Schwer, H.; Ott, H. R. Phys. Rev. B 1997, 56, 12916.
57. Bird, C. F.; Bowler, D. R. Surf. Sci. 2003, 531, L351
58. Manyala, N.; DiTusa, J. F.; Aeppli, G.; Ramirez, A. P. Doping a Semiconductor to Create an Unconventional Metal. Nature 2008, 454, 976-980.
59. Manyala, N.; Sidis, Y.; DiTusa, J. F.; Aeppl, G.; Young, D. P.; Fisk, Z. Magnetoresistance from Quantum Interfence Effects in Ferromagnets. Nature 2000, 404, 581-584.
60. Chattopadhyay, M. K.; Roy, S. B.; Chaudhary, S. Magnetic Properties of Fe1-xCoxSi Alloys. Phys. Rev. B 2002, 65, 132409.
61. Schmitt, A. L.; Higgins, J. M.; Jin, S. Chemical Synthesis and Magnetotransport of Magnetic Semiconducting Fe1−xCoxSi Alloy Nanowires. Nano Lett. 2008, 8, 810-815.
62. Dietl, T.; Ohno H.; Matsukura F. Hole-Mediated Ferromagnetism in Tetrahedrally Coordinated Semiconductors. Phys. Rev. B 2001, 63, 195205.
63. Manayala, N.; Sidis, Y.; Ditusa, J. F.; Aeppli, G.; Young, D. P.; Fisk, Z. Large Anomalous Hall Effect in a Silicon-Based Magnetic Semiconductor. Nat. Mater. 2004, 3, 255-262.
64. Beille J.; Voiron J.; Roth M. Long Period Helimagnetism The Cubic B20 FexCo1-xSi and CoxMn1-xSi Alloys. Solid State Commun. 1983, 47, 399-402.
65. Uchida, M.; Onose, Y.; Matsui, Y.; Tokura, Y. Real-Space Observation of Helical Spin Order. Science 2006, 311, 359-361.
66. Bauer A.; Neubauer A.; Franz C.; Münzer W.; Garst M.; Pfleiderer C. Quantum Phase Transitions in Single-crystal Mn1−xFexSi and Mn1-xCoxSi: Crystal Growth, Magnetization, Ac Susceptibility, and Specific Heat. Phys. Rev. B 2010, 82, 064404.
67. DeGrave J. P.; Schmitt A. L.; Selinsky R. S.; Higgins J. M.; Keavney D. J.; Jin S. Spin Polarization Measurement of Homogeneously Doped Fe1-xCoxSi Nanowires by Andreev Reflection Spectroscopy. Nano Lett. 2011, 11, 4431-4437.
68. Tsai, C. I.; Wang, C. Y.; Tang, J.; Hung, M. H.; Wang, K. L., Chen, L. J. Electrical Properties and Mangetic Response of Cobalt Germanosilicide Nanowires. ACS Nano 2011, 5, 9552-9558.
69. Hung, S. W.; Yeh, P. H.; Chu, L. W.; Chen, C. D.; Chou, L. J.; Wu, Y. J.; Chen, L. J. Direct Growth of β-FeSi2 Nanowires with Infrared Emission, Ferromagnetism at Room Temperature and High Magnetoresistance via a Spontaneous Chemical Reaction Method. J. Mater. Chem. 2011, 21, 5704-5709.
Chapter 3
1. Huang, C. T.; Song, J.; Lee, W. F.; Ding, Y.; Gao, Y.; Hao, Y.; Chen, L. J.; Wang, Z. L. GaN Nanowire Arrays for High-Output Nanogenerators. J. Am. Chem. Soc. 2010, 132, 4766-4771.
2. Chen, M. T.; Lu, M. P.; Wu, Y. J.; Song, J.; Lee, C. Y.; Lu, M. Y.; Chang, Y. C.; Chou, L. J.; Wang, Z. L.; Chen, L. J. Near UV LEDs Made with in Situ Doped p-n Homojunction ZnO Nanowire Arrays. Nano Lett. 2010, 10, 4387-4393.
3. Jung, Y.; Lee, S. H.; Ko, D. K.; Agarwal, R. Synthesis and Characterization of Ge2Sb2Te5 Nanowires with Memory Switching Effect. J. Am. Chem. Soc. 2006, 128, 14025-14027.
4. Hou, T. C.; Han, Y. H.; Lo, S. C.; Lee, C. T.; Ouyang, H.; Chen, L. J. Room-Temperature Ferromagnetism in CrSi2(core)/SiO2(shell) Semiconducting Nanocables. Appl. Phys. Lett. 2011, 98, 193104.
5. Lee, C. Y., Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.; Chen. L. J. Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties. J. Phys. Chem. C 2009, 113, 2286-2289.
6. Tsai, C. I.; Yeh, P. H., Wang, C. Y.; Wu, H. W.; Chen, U. S.; Lu, M. Y.; Wu, W. W.; Chen, L. J.; Wang, Z. L. Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties. Cryst. Growth Des. 2009, 9, 4514-4518.
7. Higgins, J. M.; Ding, R.; DeGrave, J. P.; Jin, S. Signature of Helimagnetic Ordering in Single-Crystal MnSi Nanowires. Nano Lett. 2010, 10, 1605-1610.
8. Seo, K.; Yoon, H.; Ryu, S. W.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Choi, Y. K.; Kim, B. Itinerant Helimagnetic Single-Crystalline MnSi Nanowires. ACS Nano 2010, 4, 2569-2576.
9. Seo, K.; Varadwaj, K. S. K.; Mohanty, P.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B. Magnetic Properties of Single-Crystalline CoSi Nanowires. Nano Lett. 2007, 7, 1240-1245.
10. Schmitt, A. L.; Higgins, J. M.; Jin, S. Chemical Synthesis and Magnetotransport of Magnetic Semiconducting Fe1-xCoxSi Alloy Nanowires. Nano Lett. 2008, 8, 810-815.
11. Ouyang, L.; Thrall, E. S.; Deshmukh, M. M.; Park, H. Vapor-Phase Synthesis and Characterization of ε-FeSi Nanowires. Adv. Mater. 2006, 18, 1437-1440.
12. Hung, S. W.; Wang, T. T. J.; Chu, L. W.; Chen, L. J. Orientation-Dependent Room-Temperature Ferromagnetism of FeSi Nanowires and Applications in Nonvolatile Memory Devices. J. Phys. Chem. C 2011, 115, 15592-15597.
13. In, J.; Varadwaj, K. S. K.; Seo, K.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B. Single-Crystalline Ferromagnetic Fe1-xCoxSi Nanowires. J. Phys. Chem. C 2008, 112, 4728-4275.
14. Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000, 287, 1019-1022.
15. Pearton, S. J.; Abernathy, C. R.; Norton, D. P.; Hebard, A. F.; Park, Y. D.; Boatner, L. A.; Budai, J. D. Advances in Wide Bandgap Materials for Semiconductor Spintronics. Mat. Sci. Eng. R 2003, 40, 137-168.
16. Stowell, C. A.; Wiacek, R. J.; Saunders, A. E.; Korgel, B. A. Synthesis and Characterization of Dilute Magnetic Semiconductor Manganese-Doped Indium Arsenide Nanocrystals. Nano Lett. 2003, 3, 1441-1447.
17. Krstajiæ, P. M.; Peeters, F. M.; Ivanov, V. A.; Kikoin, K.; Fleurov, V. Double-Exchange Mechanisms for Mn-doped III-V Ferromagnetic Semiconductors. Phys. Rev. B 2004, 70, 195215.
18. Behan, A. J.; Mokhtari, A.; Blythe, H. J.; Score, D.; Xu, X-H.; Neal, J. R.; Fox, A. M.; Gehring, G. A. Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductor and a Dilute Magnetic Insulator. Phys. Rev. Lett. 2008, 100, 047206.
19. Teran, F. J.; Potemski, M.; Maude, D. K.; Plantier, D.; Hassan, A. K.; Sachrajda, A. Collective Character of Spin Excitations in a System of Mn2+ Spins Coupled to a Two-Dimensional Electron Gas. Phys. Rev. Lett. 2003, 97, 077201.
20. Dietl, T.; Ohno H.; Matsukura F. Hole-Mediated Ferromagnetism in Tetrahedrally Coordinated Semiconductors. Phys. Rev. B 2001, 63, 195205.
21. Manayala, N.; Sidis, Y.; Ditusa, J. F.; Aeppli, G.; Young, D. P.; Fisk, Z. Large Anomalous Hall Effect in a Silicon-Based Magnetic Semiconductor. Nat. Mater. 2004, 3, 255-262.
22. Jiang, W.; Zhou, X. Z.; Williams, G. Scaling the Anomalous Hall Effect: A Connection between Transport and Magnetism. Phys. Rev. B 2010, 82, 144424.
23. Schlesinger, Z.; Fisk, Z.; Zhang, H. T.; Maple, M. B. Is FeSi a Kondo Insulator?. J. Phys. B-At. Mol. Opt. Phys. 1997, 13, 460-462.
24. Manyala, N.; DiTusa, J. F.; Aeppli, G.; Ramirez, A. P. Doping a Semiconductor to Create an Unconventional Metal. Nature 2008, 454, 976-980.
25. Jeannine, R. S.; Jin, S. Epitaxially-Hyperbranched FeSi Nanowires Exhibiting Merohedral Twinning. J. Mater. Chem. 2010, 20, 1375-1382.
26. Higgins J. M.; Carmichael P.; Schmitt A. L.; Lee S.; Degrave J. P.; Jin S. Mechanistic Investigation of the Growth of Fe1-xCoxSi (0≦x≦1) and Fe5(Si1-yGey)3 (0≦y≦0.33) Ternary Alloy Nanowires. ACS Nano 2011, 5, 3268-3277.
Chapter 4
1. Chen, L. J. Metal Silicides: an Integral Part of Microelectronics. JOM, 2005, 57 (9), 24-30.
2. Chen, S. Y.; Yeh, P. H.; Wu, W. W.; Chen, U. S.; Chueh, Y. L.; Yang, Y. C.; Gwo, S.; Chen, L. J. Low Resistivity Metal Silicide Nanowires with Extraordinarily High Aspect Ratio for Future Nanoelectronic Devices. ACS Nano 2011, 5, 9202-9207.
3. Lee, C. Y., Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.; Chen. L. J. Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties. J. Phys. Chem. C 2009, 113, 2286-2289.
4. Tsai, C. I.; Yeh, P. H., Wang, C. Y.; Wu, H. W.; Chen, U. S.; Lu, M. Y.; Wu, W. W.; Chen, L. J.; Wang, Z. L. Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties. Cryst. Growth Des. 2009, 9, 4514-4518.
5. Higgins, J. M.; Ding, R.; DeGrave, J. P.; Jin, S. Signature of Helimagnetic Ordering in Single-Crystal MnSi Nanowires. Nano Lett. 2010, 10, 1605-1610.
6. Seo, K.; Yoon, H.; Ryu, S. W.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Choi, Y. K.; Kim, B. Itinerant Helimagnetic Single-Crystalline MnSi Nanowires. ACS Nano 2010, 4, 2569-2576.
7. Seo, K.; Varadwaj, K. S. K.; Mohanty, P.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B. Magnetic Properties of Single-Crystalline CoSi Nanowires. Nano Lett. 2007, 7, 1240-1245.
8. Ouyang, L.; Thrall, E. S.; Deshmukh, M. M.; Park, H. Vapor-Phase Synthesis and Characterization of ε-FeSi Nanowires. Adv. Mater. 2006, 18, 1437-1440.
9. Hung, S. W.; Wang, T. T. J.; Chu, L. W.; Chen, L. J. Orientation-Dependent Room-Temperature Ferromagnetism of FeSi Nanowires and Applications in Nonvolatile Memory Devices. J. Phys. Chem. C 2011, 115, 15592-15597.
10. Schmitt, A. L.; Higgins, J. M.; Jin, S. Chemical Synthesis and Magnetotransport of Magnetic Semiconducting Fe1-xCoxSi Alloy Nanowires. Nano Lett. 2008, 8, 810-815.
11. In, J.; Varadwaj, K. S. K.; Seo, K.; Lee, S.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B. Single-Crystalline Ferromagnetic Fe1-xCoxSi Nanowires. J. Phys. Chem. C 2008, 112, 4728-4275.
12. Ezawa, M.; Compact Merons and Skyrmions in Thin Chiral Magnetic Films. Phys. Rev. B 2011, 83, 100408.
13. Bauer A.; Neubauer A.; Franz C.; Münzer W.; Garst M.; Pfleiderer C. Quantum Phase Transitions in Single-crystal Mn1−xFexSi and Mn1-xCoxSi: Crystal Growth, Magnetization, Ac Susceptibility, and Specific Heat. Phys. Rev. B 2010, 82, 064404.
14. Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000, 287, 1019-1022.
15. Schmitt, A. L.; Higgins, J. M.; Szczech, J. R.; Jin, S. Synthesis and applications of metal silicide nanowires, J. Mater. Chem., 2010, 20, 223-235.
16. Schlesinger, Z.; Fisk, Z.; Zhang, H. T.; Maple, M. B. Is FeSi a Kondo Insulator?. J. Phys. B-At. Mol. Opt. Phys. 1997, 13, 460-462.
17. Ouyang, L.; Thrall, E. S.; Deshmukh, M. M.; Park, H. Vapor-Phase Synthesis and Characterization of ε-FeSi Nanowires. Adv. Mater. 2006, 18, 1437-1440.
18. Song, Y.; Schmitt, A. L.; Jin, S. Ultralong Single-Crystal Metallic Ni2Si Nanowires with Low Resistivity. Nano Lett. 2007, 7, 965–969.
19. Lee, C. Y.; Lu, M. P.; Liao, K. F.; Lee, W. F.; Huang, C. T.; Chen, S. Y.; Chen, L. J. Free-Standing Single Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties. J. Phys. Chem. C, 2009, 113, 2286-2289.
20. Chang, C. M.; Chang, Y. C.; Chung, Y. A.; Lee, C. Y.; Chen, L. J.; Synthesis and Properties of the Low Resistivity TiSi2 Nanowires Grown with TiF4 Precursor”, J. Phys. Chem. C 2009, 113, 17720–17723.
21. Seo, K.; Lee, S.; Yoon, H.; In, J.; Varadwaj, K. S. K.; Jo, Y.; Jung, M. H.; Kim, J.; Kim, B.; Composition-Tuned ConSi nanowires: Location-Selective Simultaneous Growth along Temperature Gradient. ACS Nano 2009, 3, 1145-1150.
22. DeGrave J. P.; Schmitt A. L.; Selinsky R. S.; Higgins J. M.; Keavney D. J.; Jin S. Spin Polarization Measurement of Homogeneously Doped Fe1-xCoxSi Nanowires by Andreev Reflection Spectroscopy. Nano Lett. 2011, 11, 4431-4437.
23. Paschen, S.; Felder, E.; Chernikov, M. A.; Degiorgi, L.; Schwer, H.; Ott, H. R.; Young, D. P.; Sarrao, J. L.; Fisk, Z. Low-Temperature Transport, Thermodynamic, and Optical Properties of FeSi. Phys. Rev. B 1997, 56, 12913-12930.
24. Manyala, N.; DiTusa, J. F.; Aeppli, G.; Ramirez, A. P. Doping a Semiconductor to Create an Unconventional Metal. Nature 2008, 454, 976-980.
25. Teran, F. J.; Potemski, M.; Maude, D. K.; Plantier, D.; Hassan, A. K.; Sachrajda, A. Collective Character of Spin Excitations in a System of Mn2+ Spins Coupled to a Two-Dimensional Electron Gas. Phys. Rev. Lett. 2003, 97, 077201.
26. Dietl, T.; Ohno H.; Matsukura F. Hole-Mediated Ferromagnetism in Tetrahedrally Coordinated Semiconductors. Phys. Rev. B 2001, 63, 195205.
27. Tsai, C. I.; Wang, C. Y.; Tang, J.; Hung, M. H.; Wang, K. L., Chen, L. J. Electrical Properties and Mangetic Response of Cobalt Germanosilicide Nanowires. ACS Nano 2011, 5, 9552-9558.
28. Hung, S. W.; Yeh, P. H.; Chu, L. W.; Chen, C. D.; Chou, L. J.; Wu, Y. J.; Chen, L. J. Direct Growth of β-FeSi2 Nanowires with Infrared Emission, Ferromagnetism at Room Temperature and High Magnetoresistance via a Spontaneous Chemical Reaction Method. J. Mater. Chem. 2011, 21, 5704-5709.
29. Chattopadhyay, M. K.; Roy, S. B.; Chaudhary, S. Magnetic Properties of Fe1-xCoxSi Alloys. Phys. Rev. B 2002, 65, 132409.
Chapter 6
1. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosening with Plasmonic Nanosensors. Nat. Mater. 2008, 7, 442–453.
2. Reinhard, B. M.; Siu, M.; Agarwal, H.; Alivisatos, A. P.; Liphartd, J. Calibration of Dynamic Molecular Rulers Based on Plasmon Coupling Between Gold Nanoparticles. Nano Lett. 2005, 5, 2246–2252.
3. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides. Nat. Mater. 2003, 2, 229–232.
4. Lal, S.; Link, S.; Halas, N. J. Nano-Optics from Sensing to Waveguiding. Nat. Photon. 2007, 1, 641–648.
5. Hsieh, C.-H.; Chou, L.-J.; Lin, G.-R.; Bando, Y.; Golberg, D. Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires. Nano Lett. 2008, 8, 3081–3085.
6. Polman, A. Plasmonic Applied. Science 2008, 322, 868–869.
7. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830.
8. Murray, W. A.; Barnes, W. L. Plasmonic Materials. Adv. Mater. 2007, 19, 3771–3782.Quinten, M.; Leitner, A.; Krenn, J. R.; Aussenegg, F. R. Electromagnetic Energy Transport via Linear Chains of Silver Nanoparticles. Opt. Lett. 1998, 23, 1331–1333.
9. Rockstuhl, C.; Salt, M. G.; Herzig, H. P. Analyzing the Scattering Properties of Coupled Metallic Nanoparticles. J. Opt. Soc. Am. A 2004, 21, 1761–1768.
10. Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J. R.; Lamprecht, B.; Aussenegg, F. R. Optical Properties of Two Interacting Gold Nanoparticles. Opt. Commun. 2003, 220, 137–141.
11. Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles. Nano Lett. 2003, 3, 1087–1090.
12. Seo, K.; Bagkar, N.; Kim, S.; In, J.; Yoon, H.; Jo, Y.; Kim, B. Diffusion-Driven Crystal Structure Transformation: Synthesis of Heusler Alloy Fe3Si Nanowires. Nano Lett. 2010, 10, 3643-3647.
13. Peng, K. Q.; Lee, S. T. Silicon Nanowires for Photovoltaic Solar Energy Conversion. Adv. Mater. 2011, 23, 198-215.
14. Huang, Z. P.; Fang, H.; Zhu, J. Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density. Adv. Mater. 2007, 19, 744-748.
15. Liu, C. Y.; Li, W. S.; Chu, L. W.; Lu, M. Y.; Tsai C. J.; Chen, L. J. An Ordered Si Nanowire with NiSi2 Tip Arrays as Excellent Field Emitters. Nanotechnology 2011, 22, 055603.
16. Subannajui, K.; Guder, F.; Zacharias, M. Bringing Order to the World of Nanowire Devices by Phase Shift Lithography. Nano Lett. 2011, 11, 3513-3518.