簡易檢索 / 詳目顯示

研究生: 謝雲亮
Yun-Liang Hsueh
論文名稱: 尺寸效應對奈米級金屬壓印成形性之影響-分子動力學模擬與奈米壓印實驗
Length scale effect on formation of metallic patterns by nanoimprint process - Molecular dynamics simulation and nanoimprint experiment
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 185
中文關鍵詞: 奈米壓印金屬薄膜線寬成形性分子動力學
外文關鍵詞: nanoimprint, metallic thin film, line width, formation, molecular dynamics
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來許多光電、通訊、電腦週邊、生醫、燃料電池等產業之零組件,由於材料特性需求或尺寸精微化,而使得射出成形技術無法被運用,本文提出之微奈米級金屬材料壓印成形技術,正可以提供上述需求的部份解答。奈米壓印(Nanoimprint)一般被認為是製造100nm以下結構最有潛力的方法之一;而有別於目前主流之奈米壓印技術,本文並不使用光蝕刻製程且被壓印之薄膜亦非「光阻材料」而為「金屬材料」。金屬薄膜壓印成形技術尚屬於未開發之園地,其力學機制、尺寸效應(Length scale effect)與製程也有待研究。
    本文首先利用分子動力學來模擬奈米壓印製程,藉由改變模具線寬及金屬薄膜厚度以研究尺寸效應,並探討該尺寸效應對金屬薄膜之強度、硬度、基材效應、液靜壓區、塑性變形及模具線寬之成形性…等之影響,以上模擬結果再依據材料學及力學理論進行分析。結果顯示,模具線寬大小及金屬薄膜厚薄對奈米壓印成形的好壞均有顯著的影響。在實驗研究方面,本文涵蓋了金屬薄膜製備、奈米壓痕薄膜機械性質量測、電子束與光蝕刻奈米模具製作、奈米壓印機台之金屬壓印、以至於使用SEM、FESEM、AFM等量測成品之表面形貌等。實驗結果也符合分子動力學模擬之趨勢,顯示尺寸效應在金屬薄膜奈米壓印成形製程中是一個相當重要的製程因素。本文亦將相關參數加以變化進行模擬與實驗,其參數分析的結果將有助於壓印製程規劃與模具設計。


    Recent development of opto-electronic and communication products, computer peripheral equipment, bio-medical devices, has resulted in increasing demands for metallic nano/micro structures. Nanoimprint is considered as one of the most potential processes for manufacturing nanostructures that have characteristic size less than 100 nm. Different from currently prevailing hot-embossing nanoimprint processes that imprint patterns on photo-resist materials and then employ lithography, this thesis proposes a method that directly transfers patterns on metallic thin films. To the best of our knowledge, there is no similar research on the formation mechanism of our proposed nanoimprint process, so the mechanics and length-scale effect must be investigated.
    This study utilizes molecular dynamics to simulate the nanoimprint process and to study the length-scale effect by varying the pattern width of the mold and the thickness of the thin film. In addition, the strength, hardness, substrate effect, hydrostatic zone, plastic deformation, etc., are analyzed on the basis of fundamental theories of material and mechanics.
    Moreover, an experimental study is also performed, which includes preparation of metallic thin film, characterization of material properties by nano-indentation, fabrication of molds by e-beam lithography as well as photo lithography, pattern formation by imprinting, and measurement of surface topology by SEM, FESEM and AFM. In consistence with the trend obtained from molecular dynamic simulation, experimental results further demonstrate that the length-scale effect is one of the important factors governing the quality of formation. Finally, a parametric study is conducted by both simulation and experiment; the results can provide useful information for the design of the mold and imprinting process.

    目錄 中文摘要………………………………………………………………… I 英文摘要…………………………………………………………………II 誌謝……………………………………………………………………...III 目錄……………………………………………………………………...IV 圖目錄…………………………………………………………………..VII 表目錄………………………………………………………………….XIV 第一章 緒論……………………………………………………………1 1-1 前言………………………………………………………………...1 1-2 研究動機…………………………………………………………...2 1-3 文獻回顧…………………………………………………………...3 1-3-1 熱壓成形式奈米壓印…………………………………………3 1-3-2 步進光感成形式奈米壓印……………………………………6 1-3-3 軟性奈米壓印…………………………………………………8 1-3-4 雷射成形式直接壓印………………………………………..10 1-3-5 奈米壓痕……………………………………………………..12 1-3-6 差排現象……………………………………………………..13 1-3-7 尺寸效應……………………………………………………..15 1-4 本文內容………………………………………………………….17 第二章 分子動力學理論……………………………………………..18 2-1 分子動力學之歷史與背景……………………………………….18 2-2 分子間作用力及勢能函數……………………………………….19 2-2-1 Lennard-Jones potential………………………………………20 2-2-2 Morse potential……………………………………………….20 2-3 模擬系統簡介法………………………………………………….21 2-3-1截斷半徑勢能法……………………………………………...22 2-3-2 Verlet鄰近表列……………………………………………….23 2-4 邊界條件………………………………………………………….26 2-4-1 週期性邊界條件……………………………………………..26 2-4-2 最小鏡像法則………………………………………………..27 2-5 模擬系統之初始值……………………………………………….29 2-5-1 初始位置……………………………………………………..29 2-5-2 初始速度……………………………………………………..30 2-6 無因次化………………………………………………………….31 2-7 Gear五階預測修正演算法………………………………………..32 2-8 模擬流程圖……………………………………………………….35 第三章 系統模型與奈米壓印成形機制……………………………..36 3-1 物理模型………………………………………………………….36 3-2 模擬參數及設定………………………………………………….38 3-3 奈米壓印之成形機制及滑移系統……………………………….43 3-3-1 成形機制……………………………………………………..43 3-3-2 滑移系統……………………………………………………..45 3-4 力量-時間(位移)圖形解釋……………………………………….48 第四章 模擬結果-金屬薄膜厚度之尺寸效應………………………60 4-1 金屬薄膜厚度之文獻回顧……………………………………….60 4-2 基材效應………………………………………………………….61 4-3 硬度……………………………………………………………….68 4-4 降伏強度………………………………………………………….74 4-5 液靜壓區………………………………………………………….83 4-6 結晶缺陷………………………………………………………….90 第五章 模擬結果-模具線寬之尺寸效應……………………………95 5-1 破壞性…………………………………………………………….95 5-2 跳躍接觸之時間………………………………………………...104 5-3 基材效應………………………………………………………...106 5-4 液靜壓區………………………………………………………...112 5-5 分子動力學模擬總結…………………………………………...113 第六章 奈米壓印實驗準備與流程…………………………………115 6-1 實驗儀器原理介紹……………………………………………...115 6-1-1 原子力顯微鏡………………………………………………115 6-1-2 掃瞄電子顯微鏡……………………………………………119 6-1-3 奈米壓痕機…………………………………………………120 6-1-4 真空直流濺鍍機……………………………………………123 6-1-5 電子束直寫機………………………………………………125 6-1-6 I-Line光學步進機…………………………………………..127 6-1-7 TCP多晶矽乾式蝕刻機…………………………………….130 6-1-8 奈米壓印機台………………………………………………132 6-2 模具及金屬薄膜製作方法……………………………………...134 6-2-1 模具製程……………………………………………………134 6-2-2 金屬薄膜製程………………………………………………137 6-3 實驗目的………………………………………………………...139 6-4 實驗規劃及實驗參數…………………………………………...140 6-5 實驗流程及實驗方法…………………………………………...141 6-6 實驗量測項目…………………………………………………...144 第七章 奈米壓印實驗結果與討論…………………………………145 7-1 實驗前量測……………………………………………………...145 7-1-1 模具之表面形貌……………………………………………145 7-1-2 模具之蝕刻深度……………………………………………150 7-1-3 金屬薄膜之厚度及表面粗糙度……………………………152 7-1-4 金屬薄膜之硬度及楊氏係數………………………………155 7-2 實驗後量測及結果與討論……………………………………...158 7-2-1 模具線寬……………………………………………………158 7-2-2 金屬薄膜厚度………………………………………………171 7-3 奈米壓印實驗總結……………………………………………...177 第八章 結論及未來工作……………………………………………178 8-1 結論……………………………………………………………...178 8-1-1 薄膜厚度之尺寸效應對奈米壓印成形性之影響…………178 8-1-2 模具線寬之尺寸效應對奈米壓印成形性之影響…………178 8-2 未來工作………………………………………………………...179 8-2-1 分子動力學模擬方面………………………………………179 8-2-2 奈米壓印實驗方面…………………………………………181 參考文獻……………………………………………………………..183

    參考文獻
    [1] Stephen Y. Chou, “Sub-10nm imprint lithography and applications”, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, Vol. 15, No. 6, Nov-Dec, 1997, p 2897
    [2] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, ”Nanoimprint lithography”, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, Vol. 14, No. 6, Nov-Dec, 1996, p 4129
    [3] Gary Stix, “Little Big Science”, Scientific American, Vol. 285, No. 3, September, 2001, p 26
    [4] George M. Whitesides, ”Self-Assembled Monolayer Directed Patterning of Surfaces”, US Patent No.6518168, 2002.
    [5] Marko Uplaznik, “Introduction to nanotechnology – soft lithography”, Lecture notes, Faculty of Mathematics and Physics, University of Lijbljana, March 2002.
    [6] Stephen Y. Chou, Chris Keimel, Jian Gu, “Ultrafast and direct imprint of nanostructures in silicon”, Nature, Vol. 417, No. 6891, Jun 20, 2002, p 835-837
    [7] Oliver W.C., Pharr G.M., “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, Vol. 7, No. 6, Jun, 1992, p 1564-1580
    [8] Field J.S., Swain M.V., “Simple predictive model for spherical indentation”, Journal of Materials Research, Vol. 8, No. 2, Feb, 1993, p 297-306
    [9] A.C. Fischer-Cripps., “Review of analysis methods for sub-micron indentation testing”, Vacuum, Vol. 58, No. 4, Sept, 2000, p 569-585
    [10] Tromas, C.; Colin, J.; Coupeau, C.; Girard, J.C.; Woirgard, J.; Grilhe, J.; ”Pop-in phenomenon during nanoindentation in MgO”, EPJ Applied Physics, Vol. 8, No. 2, Nov, 1999, p 123-128
    [11] Tromas, C.; Girard, J.C.; Audurier, V.; Woirgard, J.; “Study of the low stress plasticity in single-crystal MgO by nanoindentation and atomic force microscopy”, Journal of Materials Science, Vol. 34, No. 21, Nov, 1999, p 5337-5342
    [12] Gaillard, Y.; Tromas, C.; Woirgard, J.; “Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching”, Acta Materialia, Vol. 51, No. 4, Feb 25, 2003, p 1059-1065
    [13] Miller, Ronald E.; Curtin, William A.; Shilkrot, L.E.; “A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films”, Acta Materialia, Vol. 52, No. 2, Jan 19, 2004, p 271-284
    [14] Gannepalli, A.; Mallapragada, S.K.; “Molecular dynamics studies of plastic deformation during silicon nanoindentation”, Nanotechnology, Vol. 12, No. 3, September, 2001, p 250-257
    [15] Lilleodden, E.T.; Zimmerman, J.A.; Foiles, S.M.; Nix, W.D.; “Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation”, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 5, May, 2003, p 901-920
    [16] Doyama, Masao,” Simulation of dislocations and plastic deformation in nano- size single crystals”, Nanostructured Materials, Vol. 9, No. 1-8, 1997, p 689-692
    [17] Huang, Hanchen; Liang, H.Y.; Woo, C.H.; Ngan, A.H.W.; Yu, T.X.; “Dislocation nucleation in the initial stage during nanoindentation”, Philosophical Magazine, Vol. 83, No. 31-34, Nov 1, 2003, p 3609-3622
    [18] Chen, Shaohua; Liu, Lei; Wang, Tzuchiang; “Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations”, Surface and Coatings Technology, Vol. 191, No. 1, Feb 1, 2005, p 25-32
    [19] Espinosa, H.D.; Prorok, B.C.; Peng, B.;“Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension”, Journal of the Mechanics and Physics of Solids, Vol. 52, No. 3, March, 2004, p 667-689
    [20] Choi, Yoonjoon; Van Vliet, Krystyn J.; Li, Ju; Suresh, Subra; “Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines”, Journal of Applied Physics, Vol. 94, No. 9, Nov 1, 2003, p 6050-6058
    [21] J. H. Irving and J. G. Kirkwood, “ The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, J. Chem. Phys. Vol. 18, 1950, p 817-829.
    [22] J. M. Haile, “Molecular Dynamics Simulation”, John Wiley & Sons, New York, 1992.
    [23] S. Maruyama, “Molecular Dynamics Methods in Microscale Heat transfer”, Handbook of Heat Exchanger, 2002
    [24] L. Verlet, “Computer ‘Experiments’ on Classical FluidsⅡ, Equilibrium Correlation Function”, Phys. Rev, Vol. 165, 1968, p 201-214.
    [25] K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface Energy and the Contact of Elastic Body”, Proc. Roy. Soc. London. A., Vol. 324, 1971, p 301-313
    [26] U.Landman and W.D. Luedtke, “Nanomechanics and Dynamics of Tip- Substrate Interactions”, J. Vac. Sci. Technol. B, Vol. 9 (2), 1991, p 414-422
    [27] Lee, Hyon-Jee; Cagin, Tahir; Goddard III, William A.; Johnson, William L.; “Molecular dynamics simulations of glass formation and crystallization in binary liquid metals”, Journal of Metastable and Nanocrystalline Materials, Vol. 15-16, 2003, p 181-186
    [28] 蕭志仲,”溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗”, 國立清華大學 碩士論文, 2004
    [29] William D. Callister, Jr., “Materials science and engineering an introducation sixth edition”, John Wiley & Sons, Inc. 2003
    [30] Miyake, Koji; Fujisawa, Satoru; Korenaga, Atsushi; Ishida, Takao; Sasaki, Shinya; “The effect of pile-up and contact area on hardness test by nanoindentation”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, Vol. 43, No. 7 B, July, 2004, Scanning Probe Microscopy/Optical Memories, p 4602-4605
    [31] Soare, S.; Bull, S.J.; O'Neil, A.G.; Wright, N.; Horsfall, A.; dos Santos, J.M.M.;
    “Nanoindentation assessment of aluminium metallisation; the effect of creep and pile-up”, Surface and Coatings Technology, Vol. 177-178, Jan 30, 2004, p 497-503
    [32] Maneiro, M.A. Garrido; Rodriguez, J.; “ Pile-up effect on nanoindentation tests with spherical-conical tips”, Scripta Materialia, Vol. 52, No. 7, April, 2005, p 593-598
    [33] Joslin, D.L.; Oliver, W.C.; “New method for analyzing data from continuos depth-sensing microindentation tests”, Journal of Materials Research, Vol. 5, No. 1, Jan, 1990, p 123-126
    [34] Saha, R.; Xue, Z.; Huang, Y.; Nix, W.D.; “Indentation of a soft metal film on a hard substrate: Strain gradient hardening effects”, Journal of the Mechanics and Physics of Solids, Vol. 49, No. 9, September, 2001, p 1997-2014
    [35] Zielinski, W.; Huang, H.; Gerberich, W.W.; “Microscopy and microindentation mechanics of single crystal Fe-3 wt.%Si: Part II. TEM of the indentation plastic zone”, Journal of Materials Research, Vol. 8, No. 6, Jun, 1993, p 1300-1310
    [36] Kramer, D.; Huang, H.; Kriese, M.; Robach, J.; Nelson, J.; Wright, A.; Bahr, D.; Gerberich, W.W.; “Yield strength predictions from the plastic zone around nanocontacts”, Acta Materialia, Vol. 47, No. 1, Dec 11, 1998, p 333-343
    [37] Volinsky, Alex A.; Moody, Neville R.; Gerberich, William W.; “Nanoindentation of Au and Pt/Cu thin films at elevated temperatures”, Journal of Materials Research, Vol. 19, No. 9, September, 2004, p 2650-2657
    [38] Falk, M.L.; Langer, J.S.; “Dynamics of viscoplastic deformation in amorphous solids”, Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol. 57, No. 6, Jun, 1998, p 7192
    [39] Gannepalli, A.; Mallapragada, S.K.; “Molecular dynamics studies of plastic deformation during silicon nanoindentation”, Nanotechnology, Vol. 12, No. 3, September, 2001, p 250-257
    [40] Arsenlis, A.; Parks, D.M.; “Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density”, Acta Materialia, Vol. 47, No. 5, Mar, 1999, p 1597-1611
    [41] Nix, William D.; Gao, Huajian; ”Indentation size effects in crystalline materials: a law for strain gradient plasticity”, Journal of the Mechanics and Physics of Solids, Vol. 46, No. 3, Mar, 1998, p 411-425
    [42] Fischer-Cripps , Anthony C.; “Nanoindentation”, SPRINGER, 2004
    [43] William F. Hosford; Robert . Caddell; “METAL FORMING Mechanics and Metallurgy”, Prentice-Hall, Inc., Englewood Cliffs, N.J. 09632, 1983
    [44] Gao, Huajian; Huang, Yonggang; “Geometrically necessary dislocation and size-dependent plasticity”, Scripta Materialia, Vol. 48, No. 2, January, 2003, p 113-118
    [45] Kubin, L.P.; Mortensen A.; “Geometrically necessary dislocation and strain-gradient plasticity: a few critical issues”, Scripta Materialia, Vol. 48, No. 2, January, 2003, p 119-125
    [46] G. Binnig, C.F. Quate, and Ch. Gerber, “Atomic force microscope”, Physical Review Letters, Vol. 56, No. 9, 1986, p930-933
    [47] T. H. Fang, “Study on the Nano-scale Processing Technology Using Atomic Force Microscopy”, Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2000.
    [48] 丁志華、管正平、黃新言、戴寶通,”奈米壓痕量測系統簡介”,奈米通訊,第九卷 第三期 P.4~P.10
    [49] K. L. Johnson, “Contact Mechanics”, Cambridge University Press, London, 1985.
    [50] http://www.mse.nthu.edu.tw/~hnlin/plan.htm
    [51] 莊達人, “VLSI製造技術”, 高立圖書有限公司, 台北, 2002
    [52] 邱燦賓、施敏, “電子術微影技術”, 科學發展月刊, 第28卷 第6期 2000, p423-434.
    [53] http://www.hysitron.com/Products/ProductPages/products_triboindenter.htm
    [54] http://www.ndl.org.tw/equip/no10ways/LI-003B.htm
    [55] 財團法人工業技術研究院機械工業研究所
    [56] ITRIScan AFM, 財團法人工業技術研究院量測技術發展中心
    [57] 鄭瑞庭、蔡宏營、林熙翔、蘇建彰、陳建洋, ”簡介下世代微影技術與奈米轉印微影技術”, 機械工業雜誌, Vol. 245, 2003年8月

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE