簡易檢索 / 詳目顯示

研究生: 曾崇育
Chung-Yuh Tzeng
論文名稱: 電針在ST36穴位在慢性類固醇誘發胰島素減敏大鼠降血糖效果及其降血糖有關的傳遞路徑相關研究
The study of hypoglycemic effect of electroacupuncture by reducing insulin resistance in chronic steroid induced insulin resistance rats and signaling pathways associated with hypoglycemic activity of ST 36 electroacupuncture
指導教授: 李寬容
Kuan-Rong Lee
張世良
Shih-Liang Chang
口試委員: 陳汶吉
Wen-Gii Chen
彭明德
Ming-Der Perng
李育臣
Yu-Chen Lee
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 118
中文關鍵詞: 電針糖尿病胰島素類固醇
外文關鍵詞: electroacupuncture, diabetic mellitus, insulin, steroid
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究主要是要建立一個慢性長期使用類固醇的大鼠所造成胰島素阻抗steroid induced insulin resistant(SIIR)動物模型後,來探討電針在足三里穴位(S36)的降血糖效果。期望能夠找到對於因長期使用類固醇引起的胰島素阻抗現象的效果,另一種治療的方式。此研究的主要目的在於藉由監測血液中的游離酯肪酸以及胰島素訊息蛋白分子看確定電針是不是有對於因慢性類固醇誘發的大鼠產生藉血糖的效果,並且利用靜脈葡萄糖耐受性試驗及胰島素挑戰試驗來評估電針對慢性類固醇誘發的大鼠的效應,以及評估電針改善慢性類固醇誘發胰島素減敏大鼠的機轉及胰島素訊息蛋白的關係。這實驗模擬慢性使用類固醇使用如臨床上使用低劑量的情況給予dexamethason每日給予1毫克/公斤,持續給予五天,以此方式成功的誘發出慢性類固醇造成胰島素阻抗現象的大鼠模型。在以此因類固醇所成功誘發出的大鼠分成電針組以及非電針組兩組,然後測此兩組大鼠中的血糖值、胰島素激發試驗以及靜脈葡萄糖耐量試驗來比較此兩組動物模型的血糖差異。此外兩組動物模型的血中游離脂肪酸以及胰島素訊息傳遞路徑中的相關蛋白,如IRS1及GLUT 4也同時被檢測。其結果顯示電針在可以降低慢性類固醇造成胰島素阻抗現象的大鼠血中的游離脂肪酸以及增加胰島素敏感度的作用而達到降血糖的效果。未來需要進一步的臨床試驗來評估電針是不是可以成為運用來治療一些需長期使用類固醇導致的糖尿病病人的另類新治療方式。進一步的實驗目的,根據我們先前相關的動物實驗結果發現電針可達到降血糖的效果,此效果可能與細胞內的訊息傳遞路徑有關,為了了解其可能的訊息傳遞路徑,我們借用高通量基因序列分析(microarray)的研究方式來探討及試著找出電針在糖尿病大鼠的S36穴位其造成降血糖的可能調控的訊息傳遞路徑研究方法為使用鏈脲佐菌素(Streptozotocin)所誘發的糖尿病大鼠將其分成兩組,第一組為實驗組有八隻糖尿病大鼠;第二組為對照組同樣有八隻糖尿病大鼠。在實驗組給予電針於起始點、30分鐘及60分鐘抽測其血糖值,並且在電針後從兩組的大鼠大腿的腓腸肌取出標本進行高通量基因序列分析。結果顯示電針會明顯的造成兩組大鼠在30分鐘及60分鐘時血糖的下降,且在高通量基因序列分析上發現電針組與非電針組的基因序列表現差異比較,結果顯示在細胞黏附因子(cell adhesion molecules)與第一型糖尿病(type 1)的相關上調基因在電針組會與非電針組出現顯著的差異。結論是細胞黏附因子與電針在鏈脲佐菌素(Streptozotocin)所誘發的第一型糖尿病大鼠的訊息傳遞路徑有關。進一步的研究來確定電針引起的降血糖有關的訊息傳遞路徑是未來需要努力的題目。


    This study is designed to evaluate the treatment effect of electroacupuncture (EA) in chronic steroid induced insulin resistant rat model. An alternative therapy is explored to reduce the chronic steroid induced insulin resistance.The aim of this study is to determine (1) if EA treatment can produce hypoglycemic effect and (2) inhibit the development of glucocorticoid-altered insulin sensitivity in chronic status and to (3) explore the mechanisms of EA by assaying plasma FFAs and proteins of insulin signal pathway. Intravenous glucose tolerance test (IVGTT) and insulin challenge test (ICT) were applied to evaluate the effect of EA on steroid induced insulin resistance (SIIR) rats. Finally, this study evaluates proteins of insulin signaling pathway to investigate the mechanisms by which EA improves the insulin resistance of SIIR rats.
    We hypothesized that electroacupuncture can produce a hypoglycemic effect in chronic steroid induced insulin resistance diabetes rat model. A diabetes rat model was created by using clinical-like dose dexamethasone, 1 mg/kg, i.p. once a day chronic to induce insulin resistance for 5 days. Then the steroid induced insulin resistant (SIIR) rats were randomly divided into SIIR+EA group and SIIR group. Plasma glucose, insulin challenge test (ICT) and intravenous glucose tolerance test (ivGTT) were used to test the change of plasma glucose levels between SIIR+EA group and SIIR group. The plasma free fatty acids (FFA) and related proteins of the insulin signaling pathway, such as IRS-1 and GLUT4 were also checked to explore the effect of EA on recovering insulin sensitivity of SIIR rats. The results showed that EA could decrease the FFA level and increase insulin sensitivity in SIIR rats. Further clinical studies are needed to determine whether EA can be an alternative and effective treatment for patients for whom chronic usage of dexamethasone is needed by reducing insulin resistance.
    Data on expression of all genes in a biological sample can be achieved in one experiment using the microarray method, the results of which can be analyzed to determine the potential pathways involved in a given process and identify potential therapeutic targets. Then the microarray analysis experiment was done to explore the possible signaling pathway related to hypoglycemic effect induced by the EA. Previous animal studies have reported a hypoglycemic effect of EA and suggested that the mechanisms are closely related to intracellular signaling pathways. The aim of this study was to screen potential for intracellular signaling pathways that are upregulated by EA at bilateral ST36 in rats with diabetes using microarray analysis. Streptozotocin (STZ) - induced diabetic rats were randomly assigned to experimental (EA, n=8) or control (non-EA, n=8) groups. Plasma glucose levels were measured at baseline, 30 and 60 minutes, and microarray analysis was performed on samples of the gastrocnemius muscle. Relative to baseline values, EA significantly reduced plasma levels of glucose at 30 and 60 minutes. The microarray pathway analysis showed that cell adhesion molecules and type 1 DM gene sets were both upregulated in EA versus non-EA groups (p<0.05). Cell adhesion molecules might be related to the hypoglycemic effect induced by EA in rats with STZ-induced type I diabetes. Future research will be required to examine the involvement of related intracellular signaling pathways.

    TABLE OF CONTENTS PublicationList:--------------------------------------------------------------------------- XII Abstract------------------------------------------------------------------------------------ XIII 中文摘要----------------------------------------------------------------------------------- XV Abbreviation----------------------------------------------------------------------------- XVII Chapter 1 1.Introduction---------------------------------------------------------------------------- 01 1.1 Definition and description of diabetes mellitus and metabolic syndrome------------------------------------------------------------------------ 02 1.1.1Complication of diabetes mellitus---------------------------------------- 05 1.2 Treatment target of diabetes mellitus and metabolic syndrome------ 08 1.2.1 Weight reduction----------------------------------------------------------- 08 1.2.2 Medication for treatment for diabetes mellitus------------------------ 10 1.2.3 Insulin resistance----------------------------------------------------------- 13 1.2.4 Molecular mechanisms of insulin resistance--------------------------- 14 1.2.5 Insulin resistance as target of therapy of metabolic syndrome------- 15 1.3. The relationship between the steroid and diabetes ---------------------16 1.3.1 Steroid induced diabetes - the pathophysiologic effect of glucocorticoids on glucose metabolism---------------------------------16 1.3.2 The side effect of steroid- glucocorticoid-induced insulin resistance--------------------------------------------------------------------- 17 1.3.3 The signaling pathway of insulin resistance caused by steroid----------------------------------------------------------------------- 18 1.4 The relationship between the adiocytokines and diabetes------------- 20 1.4.1 The function and classification of adipocytokines -------------------- 20 1.4.2 Molecular mechanism of adipocytokines and clinical implication of metabolic syndrome ---------------------------------------------------- 20 1.4.3 Molecular mechanism of free fatty acid and insulin resistance in diabetes----------------------------------------------------------------------- 21 1.4.4 Molecular mechanism of glucocorticoid induced diabetes----------- 22 1.4.5 Regulation of insulin receptor function and expression of insulin receptor substrate-1--------------------------------------------------------- 23 1.4.6 Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes------------------------------------ 24 1.5 Type of diabetes animal model---------------------------------------------- 25 1.5.1 Streptozotocin-induced diabetes rats------------------------------------ 25 1.5.2 Steroid induced insulin resistant diabetes rats-------------------------- 26 1.5.3 Adrenalectomized mice model------------------------------------------- 26 1.5.4 High-frutose diet induced insulin resistance mice--------------------- 27 1.6 Western blotting method----------------------------------------------------- 27 1.7 DNA microarray--------------------------------------------------------------- 28 1.8 The role of electroacupuncture in treatment of diabetes mellitus---- 32 1.8.1 The related studies of electroacupuncture in treatment of diabetes mellitus------------------------------------------------------------- 34 1.8.2 The effect of the electroacupuncture related to insulin resistance--- 38 1.8.3 The signal pathway of related to the metabolism of glucose--------- 39 1.8.4 Application of microarray to integrate the electroacupuncture and western medicine----------------------------------------------------------- 41 1.8.5 Introduction of gene set test , gene set enrichment analysis and KEGG------------------------------------------------------------------- 43 2. Aims of the study---------------------------------------------------------------------- 46 Chapter 2 Tile of article : Low frequency 15 Hz electroacupuncture at ST36 improves insulin sensitivity and reduces free fatty acid levels in rats with chronic dexamethasone induced insulin resistance 2.1. Abstract------------------------------------------------------------------------ 48 2.2 Introduction-------------------------------------------------------------------- 49 2.3 Methods------------------------------------------------------------------------- 50 2.3.1 Experimental animal and study design---------------------------------- 51 2.3.2 Insulin challenge test------------------------------------------------------ 53 2.3.3 Intravenous glucose tolerance test--------------------------------------- 53 2.3.4 Electroacupuncture-------------------------------------------------------- 54 2.3.5 Measurement of plasma glucose and free fatty acid------------------- 55 2.3.6 Euthanasia, tissue sampling and Western blot analysis--------------- 56 2.3.7Statistical analysis---------------------------------------------------------- 57 2.4 Results---------------------------------------------------------------------------- 58 2.4.1 Basal plasma glucose levels in normal and SIIR rats----------------- 58 2.4.2 Hypoglycaemic effect of EA in SIIR rats------------------------------- 58 2.4.3 Insulin challenge test------------------------------------------------------ 59 2.4.4 Intravenous glucose tolerance test--------------------------------------- 60 2.4.5 The effect of EA in plasma FFA level under iv GTT----------------- 61 2.4.6 The effect of EA on plasma FFA levels--------------------------------- 61 2.4.7 The effect of EA on IRS-1 and GLUT4--------------------------------- 63 2.5 Discussion------------------------------------------------------------------------ 63 Chapter 3 Tile of article: Analysis of major effective pathway of hypoglycemic effect of electro-acupuncture from muscle of ST36 treated rat 3.1 Abstract-------------------------------------------------------------------------- 67 3.2 Introduction--------------------------------------------------------------------- 67 3.3 Method--------------------------------------------------------------------------- 72 3.3.1 Animal model---------------------------------------------------------------- 72 3.3.2 Electroacupuncture---------------------------------------------------------- 72 3.3.3 Experimental protocol------------------------------------------------------ 73 3.3.4 RNA extraction-------------------------------------------------------------- 73 3.3.5 Microarray-------------------------------------------------------------------- 73 3.3.6 The relationship between formula treatments and MeSH disease terms---------------------------------------------------------------- 74 3.3.7 Western blotting analysis-------------------------------------------------- 74 3.3.8 Statistical analysis----------------------------------------------------------- 74 3.4 Results--------------------------------------------------------------------------- 76 3.4.1 Hypoglycemic effects of EA---------------------------------------------- 76 3.4.2 Pathway analysis------------------------------------------------------------ 76 3.4.3Gene-expression connection of EA-BS treatment with MeSH disease status-------------------------------------------------------------------------- 77 3.5 Discussion----------------------------------------------------------------------- 78 Chapter 4 4.1 Discussion------------------------------------------------------------------------ 82 4.1.1 What is the connection between steroid and diabetes?---------------- 82 4.1.2 Hyperglycemic effect of EA in SIIR rats------------------------------- 82 4.1.3 The application microarray analysis in studying of the mechanism of EA-------------------------------------------------------------------------- 92 Chapter 5 5.Future perspective--------------------------------------------------------------- 95 Reference---------------------------------------------------------------------------------- 99 Appendix: --------------------------------------------------------------------------------- 116 Published paper(1)------------------------------------------------------------------- 117 Published paper(2)------------------------------------------------------------------ 118

    1. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2010. 33 Suppl 1: p. S62-9.
    2. Alberti, K.G. and P.Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med, 1998. 15(7): p. 539-53.
    3. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 2002. 106(25): p. 3143-421.
    4. Saltiel, A.R. and C.R. Kahn, Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001. 414(6865): p. 799-806.
    5. Grundy, S.M., et al., Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol, 2004. 24(2): p. e13-8.
    6. Adeghate, E., P. Schattner, and E. Dunn, An update on the etiology and epidemiology of diabetes mellitus. Ann N Y Acad Sci, 2006. 1084: p. 1-29.
    7. Pani, L.N., et al., Effect of aging on A1C levels in individuals without diabetes: evidence from the Framingham Offspring Study and the National Health and Nutrition Examination Survey 2001-2004. Diabetes Care, 2008. 31(10): p. 1991-6.
    8. Hara, H., G. Egusa, and M. Yamakido, Incidence of non-insulin-dependent diabetes mellitus and its risk factors in Japanese-Americans living in Hawaii and Los Angeles. Diabet Med, 1996. 13(9 Suppl 6): p. S133-42.
    9. Runge, C.F., Economic consequences of the obese. Diabetes, 2007. 56(11): p. 2668-72.
    10. Heraclides, A.M., et al., Work stress, obesity and the risk of type 2 diabetes: gender-specific bidirectional effect in the Whitehall II study. Obesity (Silver Spring), 2012. 20(2): p. 428-33.
    11. Amed, S., et al., Type 2 diabetes, medication-induced diabetes, and monogenic diabetes in Canadian children: a prospective national surveillance study. Diabetes Care, 2010. 33(4): p. 786-91.
    12. Maes, B.D., et al., Posttransplantation diabetes mellitus in FK-506-treated renal transplant recipients: analysis of incidence and risk factors. Transplantation, 2001. 72(10): p. 1655-61.
    13. van Belle, T.L., K.T. Coppieters, and M.G. von Herrath, Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev, 2011. 91(1): p. 79-118.
    14. Rees, D.A. and J.C. Alcolado, Animal models of diabetes mellitus. Diabet Med, 2005. 22(4): p. 359-70.
    15. Herbel, G. and P.J. Boyle, Hypoglycemia. Pathophysiology and treatment. Endocrinol Metab Clin North Am, 2000. 29(4): p. 725-43.
    16. Oyer, D.S., The science of hypoglycemia in patients with diabetes. Curr Diabetes Rev, 2013. 9(3): p. 195-208.
    17. Wolfsdorf, J., N. Glaser, and M.A. Sperling, Diabetic ketoacidosis in infants, children, and adolescents: A consensus statement from the American Diabetes Association. Diabetes Care, 2006. 29(5): p. 1150-9.
    18. Glaser, N. and N. Kuppermann, The evaluation and management of children with diabetic ketoacidosis in the emergency department. Pediatr Emerg Care, 2004. 20(7): p. 477-81; quiz 482-4.
    19. Kitabchi, A.E., et al., Hyperglycemic crises in adult patients with diabetes. Diabetes Care, 2009. 32(7): p. 1335-43.
    20. Brenner, Z.R., Management of hyperglycemic emergencies. AACN Clin Issues, 2006. 17(1): p. 56-65; quiz 91-3.
    21. Haratz, S. and D. Tanne, Diabetes, hyperglycemia and the management of cerebrovascular disease. Curr Opin Neurol, 2011. 24(1): p. 81-8.
    22. Morel, O., et al., Diabetes and the platelet: toward new therapeutic paradigms for diabetic atherothrombosis. Atherosclerosis, 2010. 212(2): p. 367-76.
    23. Giordani, I., et al., Acute hyperglycemia reduces cerebrovascular reactivity: the role of glycemic variability. J Clin Endocrinol Metab, 2014. 99(8): p. 2854-60.
    24. Libby, P., et al., Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Circulation, 2005. 111(25): p. 3489-93.
    25. Bogdanovic, R., Diabetic nephropathy in children and adolescents. Pediatr Nephrol, 2008. 23(4): p. 507-25.
    26. Antic, M., et al., [Risk factors for the development of diabetic nephropathy]. Srp Arh Celok Lek, 2009. 137(1-2): p. 18-26.
    27. McKenna, K. and C. Thompson, Microalbuminuria: a marker to increased renal and cardiovascular risk in diabetes mellitus. Scott Med J, 1997. 42(4): p. 99-104.
    28. Garg, J.P. and G.L. Bakris, Microalbuminuria: marker of vascular dysfunction, risk factor for cardiovascular disease. Vasc Med, 2002. 7(1): p. 35-43.
    29. de Zeeuw, D., H.H. Parving, and R.H. Henning, Microalbuminuria as an early marker for cardiovascular disease. J Am Soc Nephrol, 2006. 17(8): p. 2100-5.
    30. Ruggenenti, P. and G. Remuzzi, Time to abandon microalbuminuria? Kidney Int, 2006. 70(7): p. 1214-22.
    31. Giunti, S., D. Barit, and M.E. Cooper, Mechanisms of diabetic nephropathy: role of hypertension. Hypertension, 2006. 48(4): p. 519-26.
    32. Nathan, D.M., et al., Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2009. 32(1): p. 193-203.
    33. Olokoba, A.B., O.A. Obateru, and L.B. Olokoba, Type 2 diabetes mellitus: a review of current trends. Oman Med J, 2012. 27(4): p. 269-73.
    34. Chiniwala, N. and S. Jabbour, Management of diabetes mellitus in the elderly. Curr Opin Endocrinol Diabetes Obes, 2011. 18(2): p. 148-52.
    35. Collier, C.A., et al., Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol Endocrinol Metab, 2006. 291(1): p. E182-9.
    36. Mikhail, N., Quick-release bromocriptine for treatment of type 2 diabetes. Curr Drug Deliv, 2011. 8(5): p. 511-6.
    37. Pratley, R.E. and A. Salsali, Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes. Curr Med Res Opin, 2007. 23(4): p. 919-31.
    38. Stonehouse, A.H., T. Darsow, and D.G. Maggs, Incretin-based therapies. J Diabetes, 2012. 4(1): p. 55-67.
    39. Fuhlendorff, J., et al., Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes, 1998. 47(3): p. 345-51.
    40. Yoon, K.H., et al., Epidemic obesity and type 2 diabetes in Asia. Lancet, 2006. 368(9548): p. 1681-8.
    41. Chamberlain, J.J., et al., Diagnosis and Management of Diabetes: Synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med, 2016.
    42. Ohkubo, Y., et al., Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract, 1995. 28(2): p. 103-17.
    43. Holman, R.R., et al., 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med, 2008. 359(15): p. 1577-89.
    44. Liang, F. and D. Koya, Acupuncture: is it effective for treatment of insulin resistance? Diabetes Obes Metab, 2010. 12(7): p. 555-69.
    45. Consensus Development Conference on Insulin Resistance. 5-6 November 1997. American Diabetes Association. Diabetes Care, 1998. 21(2): p. 310-4.
    46. Reaven, G.M., Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988. 37(12): p. 1595-607.
    47. Ferrannini, E., et al., Hyperinsulinaemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia, 1991. 34(6): p. 416-22.
    48. Abbasi, F., et al., Relationship between obesity, insulin resistance, and coronary heart disease risk. J Am Coll Cardiol, 2002. 40(5): p. 937-43.
    49. McLaughlin, T., et al., Relationship between insulin resistance, weight loss, and coronary heart disease risk in healthy, obese women. Metabolism, 2001. 50(7): p. 795-800.
    50. Groop, L.C., et al., Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest, 1989. 84(1): p. 205-13.
    51. White, M.F., The insulin signalling system and the IRS proteins. Diabetologia, 1997. 40 Suppl 2: p. S2-17.
    52. Cheatham, B., et al., Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol, 1994. 14(7): p. 4902-11.
    53. Ogihara, T., T. Asano, and T. Fujita, Contribution of salt intake to insulin resistance associated with hypertension. Life Sci, 2003. 73(5): p. 509-23.
    54. Saad, M.J., Molecular mechanisms of insulin resistance. Braz J Med Biol Res, 1994. 27(4): p. 941-57.
    55. Fonseca, V., et al., Nontraditional risk factors for cardiovascular disease in diabetes. Endocr Rev, 2004. 25(1): p. 153-75.
    56. Goodarzi, M.O. and M. Bryer-Ash, Metformin revisited: re-evaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents. Diabetes Obes Metab, 2005. 7(6): p. 654-65.
    57. Home, P.D., et al., Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet, 2009. 373(9681): p. 2125-35.
    58. Hwang, J.L. and R.E. Weiss, Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab Res Rev, 2014. 30(2): p. 96-102.
    59. Willi, S.M., et al., Effective use of thiazolidinediones for the treatment of glucocorticoid-induced diabetes. Diabetes Res Clin Pract, 2002. 58(2): p. 87-96.
    60. Saad, M.J., et al., Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest, 1993. 92(4): p. 2065-72.
    61. Van Epps-Fung, M., et al., Fatty acid-induced insulin resistance in adipocytes. Endocrinology, 1997. 138(10): p. 4338-45.
    62. van Raalte, D.H., et al., Acute and 2-week exposure to prednisolone impair different aspects of beta-cell function in healthy men. Eur J Endocrinol, 2010. 162(4): p. 729-35.
    63. Cristancho, A.G. and M.A. Lazar, Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol, 2011. 12(11): p. 722-34.
    64. Biddinger, S.B. and C.R. Kahn, From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol, 2006. 68: p. 123-58.
    65. Almon, R.R., et al., Temporal profiling of the transcriptional basis for the development of corticosteroid-induced insulin resistance in rat muscle. J Endocrinol, 2005. 184(1): p. 219-32.
    66. Almon, R.R., D.C. DuBois, and W.J. Jusko, A microarray analysis of the temporal response of liver to methylprednisolone: a comparative analysis of two dosing regimens. Endocrinology, 2007. 148(5): p. 2209-25.
    67. Buren, J., et al., Insulin action and signalling in fat and muscle from dexamethasone-treated rats. Arch Biochem Biophys, 2008. 474(1): p. 91-101.
    68. Bazuine, M., et al., Mitogen-activated protein kinase (MAPK) phosphatase-1 and -4 attenuate p38 MAPK during dexamethasone-induced insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol, 2004. 18(7): p. 1697-707.
    69. Ferris, H.A. and C.R. Kahn, New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it. J Clin Invest, 2012. 122(11): p. 3854-7.
    70. Nishida, M., T. Funahashi, and I. Shimomura, Pathophysiological significance of adiponectin. Med Mol Morphol, 2007. 40(2): p. 55-67.
    71. Matsuzawa, Y., Adipocytokines and metabolic syndrome. Semin Vasc Med, 2005. 5(1): p. 34-9.
    72. Matsuda, M. and I. Shimomura, [Adipocytokines and metabolic syndrome--molecular mechanism and clinical implication]. Nihon Rinsho, 2004. 62(6): p. 1085-90.
    73. Zhuang, X.F., et al., Adipocytokines: a bridge connecting obesity and insulin resistance. Med Hypotheses, 2009. 73(6): p. 981-5.
    74. Zou, C. and J. Shao, Role of adipocytokines in obesity-associated insulin resistance. J Nutr Biochem, 2008. 19(5): p. 277-86.
    75. Charles, M.A., et al., The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia, 1997. 40(9): p. 1101-6.
    76. Mokdad, A.H., et al., Diabetes trends in the U.S.: 1990-1998. Diabetes Care, 2000. 23(9): p. 1278-83.
    77. Groop, L.C., et al., The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab, 1991. 72(1): p. 96-107.
    78. Girard, J., [Role of free fatty acids in the insulin resistance of non-insulin-dependent diabetes]. Diabete Metab, 1995. 21(2): p. 79-88.
    79. Ruzzin, J., A.S. Wagman, and J. Jensen, Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia, 2005. 48(10): p. 2119-30.
    80. Buren, J., et al., Dexamethasone impairs insulin signalling and glucose transport by depletion of insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes. Eur J Endocrinol, 2002. 146(3): p. 419-29.
    81. Sakoda, H., et al., Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes, 2000. 49(10): p. 1700-8.
    82. Youngren, J.F., Regulation of insulin receptor function. Cell Mol Life Sci, 2007. 64(7-8): p. 873-91.
    83. Shichiri, M. and E. Araki, [The expression of the insulin receptor substrate-1 (IRS-1) and analysis of its mechanism]. Nihon Naibunpi Gakkai Zasshi, 1995. 71(1): p. 21-6.
    84. DeFronzo, R.A. and E. Ferrannini, Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care, 1991. 14(3): p. 173-94.
    85. Goodyear, L.J. and B.B. Kahn, Exercise, glucose transport, and insulin sensitivity. Annu Rev Med, 1998. 49: p. 235-61.
    86. Henry, R.R., Glucose control and insulin resistance in non-insulin-dependent diabetes mellitus. Ann Intern Med, 1996. 124(1 Pt 2): p. 97-103.
    87. Hunter, S.J. and W.T. Garvey, Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system. Am J Med, 1998. 105(4): p. 331-45.
    88. Lewis, G.F., et al., Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev, 2002. 23(2): p. 201-29.
    89. Wu, K.K. and Y. Huan, Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol, 2008. Chapter 5: p. Unit 5.47.
    90. Thulesen, J., et al., Short-term insulin treatment prevents the diabetogenic action of streptozotocin in rats. Endocrinology, 1997. 138(1): p. 62-8.
    91. Holemans, K., et al., Maternal semistarvation and streptozotocin-diabetes in rats have different effects on the in vivo glucose uptake by peripheral tissues in their female adult offspring. J Nutr, 1997. 127(7): p. 1371-6.
    92. Akbarzadeh, A., et al., Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem, 2007. 22(2): p. 60-4.
    93. Furman, B.L., Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc Pharmacol, 2015. 70: p. 5.47.1-5.47.20.
    94. Shpilberg, Y., et al., A rodent model of rapid-onset diabetes induced by glucocorticoids and high-fat feeding. Dis Model Mech, 2012. 5(5): p. 671-80.
    95. Wittmers, L.E., Jr. and E.W. Haller, Effect of adrenalectomy on the metabolism of glucose in obese (C57 Bl/6J ob/ob) mice. Metabolism, 1983. 32(12): p. 1093-100.
    96. Shimomura, Y., G.A. Bray, and M. Lee, Adrenalectomy and steroid treatment in obese (ob/ob) and diabetic (db/db) mice. Horm Metab Res, 1987. 19(7): p. 295-9.
    97. Spear, G.S., et al., Effect of adrenalectomy on the pancreas of db/db mice. Horm Metab Res, 1986. 18(11): p. 743-5.
    98. Daly, M.E., et al., Dietary carbohydrates and insulin sensitivity: a review of the evidence and clinical implications. Am J Clin Nutr, 1997. 66(5): p. 1072-85.
    99. Briand, F., et al., High-fat and fructose intake induces insulin resistance, dyslipidemia, and liver steatosis and alters in vivo macrophage-to-feces reverse cholesterol transport in hamsters. J Nutr, 2012. 142(4): p. 704-9.
    100. Basciano, H., L. Federico, and K. Adeli, Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond), 2005. 2(1): p. 5.
    101. Mahmood, T. and P.C. Yang, Western blot: technique, theory, and trouble shooting. N Am J Med Sci, 2012. 4(9): p. 429-34.
    102. Grigoryev, Y. Introduction to DNA microarray. 2011; Available from: http://bitesizebio.com/7206/introduction-to-dna-microarrays/.
    103. Hoopes, L. Genetic diagnosis:DNA microarrays and cancer. 2008; Available from: https://www.genome.gov/10000533.
    104. McLeod, J.G., Acupuncture. Aust J Physiother, 1974. 20(3): p. 141-3.
    105. Lee, P.K., et al., Treatment of chronic pain with acupuncture. Jama, 1975. 232(11): p. 1133-5.
    106. Gaw, A.C., L.W. Chang, and L.C. Shaw, Efficacy of acupuncture on osteoarthritic pain. A controlled, double-blind study. N Engl J Med, 1975. 293(8): p. 375-8.
    107. Levine, J.D., J. Gormley, and H.L. Fields, Observations on the analgesic effects of needle puncture (acupuncture). Pain, 1976. 2(2): p. 149-59.
    108. Famewo, C.E., Management of post-operative pain: current concepts and methods of management. Afr J Med Med Sci, 1983. 12(2): p. 101-6.
    109. Christensen, P.A., et al., Electroacupuncture and postoperative pain. Br J Anaesth, 1989. 62(3): p. 258-62.
    110. Lin, J.G., et al., The effect of high and low frequency electroacupuncture in pain after lower abdominal surgery. Pain, 2002. 99(3): p. 509-14.
    111. Wang, Q., The present situation of TCM treatment for diabetes and its researches. J Tradit Chin Med, 2003. 23(1): p. 67-73.
    112. Wu, W. and C. Li, Diabetes mellitus treated by massage. J Tradit Chin Med, 1998. 18(1): p. 64-5.
    113. Figueiredo, L.M., et al., Electroacupuncture stimulation using different frequencies (10 and 100 Hz) changes the energy metabolism in induced hyperglycemic rats. Acta Cir Bras, 2011. 26 Suppl 1: p. 47-52.
    114. Matthews, D.R., et al., Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985. 28(7): p. 412-9.
    115. Shapira, M.Y., et al., A sustained, non-insulin related, hypoglycaemic effect of electroacupuncture in diabetic Psammomys obesus. Diabetologia, 2000. 43(6): p. 809-13.
    116. Chang, S.L., et al., An insulin-dependent hypoglycaemia induced by electroacupuncture at the Zhongwan (CV12) acupoint in diabetic rats. Diabetologia, 1999. 42(2): p. 250-5.
    117. Lin, J., Chang SL, and C. JT., Release of beta-endorphin from adrenal gland to lower plasma glucose by the electroacupuncture at Zhongwan acupoint in rats. Neuroscience Lett, 2002. 326(1): p. 17-20.
    118. Lin, J.G., et al., Multiple sources of endogenous opioid peptide involved in the hypoglycemic response to 15 Hz electroacupuncture at the Zhongwan acupoint in rats. Neurosci Lett, 2004. 366(1): p. 39-42.
    119. Lee, W.K., et al., Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats. Clin Exp Pharmacol Physiol, 2006. 33(1-2): p. 27-32.
    120. Lee, Y.C., et al., Electroacupuncture at the Zusanli (ST-36) acupoint induces a hypoglycemic effect by stimulating the cholinergic nerve in a rat model of streptozotocine-induced insulin dependent diabetes mellitus. eCAM, 2010. (accepted).
    121. Lee, Y.C., et al., Electroacupuncture-induced cholinergic nerve activation enhances the hypoglycemic effect of exogenous insulin in a rat model of streptozotocin-induced diabetes. Exp Diabetes Res, 2011. 2011: p. 947138.
    122. Zhao, X., [Effect of HC-3 on electroacupuncture-induced immunoregulation]. Zhen Ci Yan Jiu, 1995. 20(2): p. 59-62.
    123. Jung, W. and S. Jung, Effects of pioglitazone and insulin on tight glycaemic control assessed by the continuous glucose monitoring system : a monocentric, parallel-cohort study. Clin Drug Investig, 2005. 25(5): p. 347-52.
    124. Tan, M.H., et al., Sustained effects of pioglitazone vs. glibenclamide on insulin sensitivity, glycaemic control, and lipid profiles in patients with Type 2 diabetes. Diabet Med, 2004. 21(8): p. 859-66.
    125. Chang, S.L., et al., Enhanced insulin sensitivity using electroacupuncture on bilateral Zusanli acupoints (ST 36) in rats. Life Sci, 2006. 79(10): p. 967-71.
    126. Cabioglu, M.T. and N. Ergene, Changes in levels of serum insulin, C-Peptide and glucose after electroacupuncture and diet therapy in obese women. Am J Chin Med, 2006. 34(3): p. 367-76.
    127. Chen, X.H. and J.S. Han, Analgesia induced by electroacupuncture of different frequencies is mediated by different types of opioid receptors: another cross-tolerance study. Behav Brain Res, 1992. 47(2): p. 143-9.
    128. Khawaja, X.Z., et al., The occurrence and receptor specificity of endogenous opioid peptides within the pancreas and liver of the rat. Comparison with brain. Biochem J, 1990. 267(1): p. 233-40.
    129. Bruni, J.F., W.B. Watkins, and S.S. Yen, beta-Endorphin in the human pancreas. J Clin Endocrinol Metab, 1979. 49(4): p. 649-51.
    130. Curry, D.L., L.L. Bennett, and C.H. Li, Stimulation of insulin secretion by beta-endorphins (1-27 & 1-31). Life Sci, 1987. 40(21): p. 2053-8.
    131. Rosenson, R.S., Effects of peroxisome proliferator-activated receptors on lipoprotein metabolism and glucose control in type 2 diabetes mellitus. Am J Cardiol, 2007. 99(4A): p. 96B-104B.
    132. Furtado, L.M., et al., Activation of the glucose transporter GLUT4 by insulin. Biochem Cell Biol, 2002. 80(5): p. 569-78.
    133. Le Roith, D. and Y. Zick, Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care, 2001. 24(3): p. 588-97.
    134. Ye, J.M., et al., Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes, 2001. 50(2): p. 411-7.
    135. Gao, Y.Z., et al., An individual variation study of electroacupuncture analgesia in rats using microarray. Am J Chin Med, 2007. 35(5): p. 767-78.
    136. Chae, Y., et al., Individual differences of acupuncture analgesia in humans using cDNA microarray. J Physiol Sci, 2006. 56(6): p. 425-31.
    137. Rayner, D.V., M.E. Thomas, and P. Trayhurn, Glucose transporters (GLUTs 1-4) and their mRNAs in regions of the rat brain: insulin-sensitive transporter expression in the cerebellum. Can J Physiol Pharmacol, 1994. 72(5): p. 476-9.
    138. Bryant, N.J., R. Govers, and D.E. James, Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol, 2002. 3(4): p. 267-77.
    139. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50.
    140. Goeman, J.J. and P. Buhlmann, Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics, 2007. 23(8): p. 980-7.
    141. Kurir, T.T., et al., [New insights in steroid diabetes]. Acta Med Croatica, 2012. 66(4): p. 303-10.
    142. Lin, R.T., et al., Acute effect of electroacupuncture at the Zusanli acupoints on decreasing insulin resistance as shown by lowering plasma free fatty acid levels in steroid-background male rats. BMC Complement Altern Med, 2009. 9: p. 26.
    143. Dresner, A., et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest, 1999. 103(2): p. 253-9.
    144. Roden, M., et al., Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest, 1996. 97(12): p. 2859-65.
    145. Paolisso, G., et al., Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia, 1995. 38(11): p. 1295-9.
    146. Ritz-Laser, B., et al., Glucose-induced preproinsulin gene expression is inhibited by the free fatty acid palmitate. Endocrinology, 1999. 140(9): p. 4005-14.
    147. Lee, Y.C., et al., Electroacupuncture at the Zusanli (ST-36) Acupoint Induces a Hypoglycemic Effect by Stimulating the Cholinergic Nerve in a Rat Model of Streptozotocine-Induced Insulin-Dependent Diabetes Mellitus. Evid Based Complement Alternat Med, 2011. 2011: p. 650263.
    148. Lin, R.T., et al., Electroacupuncture improves glucose tolerance through cholinergic nerve and nitric oxide synthase effects in rats. Neurosci Lett, 2011. 494(2): p. 114-8.
    149. Chen, Y.I., et al., Peroxisome proliferator-activated receptor activating hypoglycemic effect of Gardenia jasminoides Ellis aqueous extract and improvement of insulin sensitivity in steroid induced insulin resistant rats. BMC Complement Altern Med, 2014. 14: p. 30.
    150. Chen, Y.I., et al., The Involvement of Serotonin in the Hypoglycemic Effects Produced by Administration of the Aqueous Extract of Xylaria nigripes with Steroid-Induced Insulin-Resistant Rats. Phytother Res, 2015. 29(5): p. 770-6.
    151. Romita, V.V., et al., Intense peripheral electrical stimulation evokes brief and persistent inhibition of the nociceptive tail withdrawal reflex in the rat. Brain Res, 1997. 761(2): p. 192-202.
    152. Liao, H.Y., et al., Electroacupuncture plus metformin lowers glucose levels and facilitates insulin sensitivity by activating MAPK in steroid-induced insulin-resistant rats. Acupunct Med, 2015. 33(5): p. 388-94.
    153. Lin, R.T., et al., Acupoint-specific, frequency-dependent, and improved insulin sensitivity hypoglycemic effect of electroacupuncture applied to drug-combined therapy studied by a randomized control clinical trial. Evid Based Complement Alternat Med, 2014. 2014: p. 371475.
    154. Cornejo-Garrido, J., et al., Antihyperglycaemic effect of laser acupuncture treatment at BL20 in diabetic rats. Acupunct Med, 2014. 32(6): p. 486-94.
    155. Zierath, J.R. and H. Wallberg-Henriksson, From receptor to effector: insulin signal transduction in skeletal muscle from type II diabetic patients. Ann N Y Acad Sci, 2002. 967: p. 120-34.
    156. Yin, J., et al., Hypoglycemic effects and mechanisms of electroacupuncture on insulin resistance. Am J Physiol Regul Integr Comp Physiol, 2014. 307(3): p. R332-9.
    157. Peplow, P.V., Electroacupuncture treatment of insulin resistance in diabetes mellitus. Acupunct Med, 2015. 33(5): p. 347-9.
    158. Ben-Romano, R., et al., Nelfinavir-induced insulin resistance is associated with impaired plasma membrane recruitment of the PI 3-kinase effectors Akt/PKB and PKC-zeta. Diabetologia, 2004. 47(6): p. 1107-17.
    159. Munoz, M.C., et al., Irbesartan restores the in-vivo insulin signaling pathway leading to Akt activation in obese Zucker rats. J Hypertens, 2006. 24(8): p. 1607-17.
    160. Tzeng, C.Y., et al., Intracellular signalling pathways associated with the glucose-lowering effect of ST36 electroacupuncture in streptozotocin-induced diabetic rats. Acupunct Med, 2015. 33(5): p. 395-9.
    161. Severino, C., et al., Low-dose dexamethasone in the rat: a model to study insulin resistance. Am J Physiol Endocrinol Metab, 2002. 283(2): p. E367-73.
    162. Griffin, M.E., et al., Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 1999. 48(6): p. 1270-4.
    163. Cheng, W.Y., et al., Microarray analysis of vanillin-regulated gene expression profile in human hepatocarcinoma cells. Pharmacol Res, 2007. 56(6): p. 474-82.
    164. Cheng, W.Y., et al., Relationship Between San-Huang-Xie-Xin-Tang and its herbal components on the gene expression profiles in HepG2 cells. Am J Chin Med, 2008. 36(4): p. 783-97.
    165. Becker, K.G., et al., The genetic association database. Nat Genet, 2004. 36(5): p. 431-2.
    166. Sweeney, G., et al., An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J Biol Chem, 1999. 274(15): p. 10071-8.
    167. Somwar, R., et al., Activation of p38 mitogen-activated protein kinase alpha and beta by insulin and contraction in rat skeletal muscle: potential role in the stimulation of glucose transport. Diabetes, 2000. 49(11): p. 1794-800.
    168. Konrad, D., et al., The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes, 2001. 50(6): p. 1464-71.
    169. Geiger, P.C., et al., Activation of p38 MAP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab, 2005. 288(4): p. E782-8.
    170. Somwar, R., et al., A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation. J Biol Chem, 2002. 277(52): p. 50386-95.
    171. Kayali, A.G., D.A. Austin, and N.J. Webster, Stimulation of MAPK cascades by insulin and osmotic shock: lack of an involvement of p38 mitogen-activated protein kinase in glucose transport in 3T3-L1 adipocytes. Diabetes, 2000. 49(11): p. 1783-93.
    172. Fujishiro, M., et al., MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem, 2001. 276(23): p. 19800-6.
    173. Ho, R.C., et al., p38gamma MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 2004. 286(2): p. R342-9.
    174. Anagnostou, S.H. and P.R. Shepherd, Glucose induces an autocrine activation of the Wnt/beta-catenin pathway in macrophage cell lines. Biochem J, 2008. 416(2): p. 211-8.
    175. Abiola, M., et al., Activation of Wnt/beta-catenin signaling increases insulin sensitivity through a reciprocal regulation of Wnt10b and SREBP-1c in skeletal muscle cells. PLoS One, 2009. 4(12): p. e8509.
    176. Welters, H.J. and R.N. Kulkarni, Wnt signaling: relevance to beta-cell biology and diabetes. Trends Endocrinol Metab, 2008. 19(10): p. 349-55.
    177. Golias, C., et al., Review. Leukocyte and endothelial cell adhesion molecules in inflammation focusing on inflammatory heart disease. In Vivo, 2007. 21(5): p. 757-69.
    178. van Buul, J.D., et al., RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol, 2007. 178(7): p. 1279-93.
    179. Dey, R., et al., A cytokine-cytokine interaction in the assembly of higher-order structure and activation of the interleukine-3:receptor complex. PLoS One, 2009. 4(4): p. e5188.
    180. Thelen, M., et al., Chemokine receptor oligomerization: functional considerations. Curr Opin Pharmacol, 2010. 10(1): p. 38-43.
    181. Boileau, P., et al., Dissociation between insulin-mediated signaling pathways and biological effects in placental cells: role of protein kinase B and MAPK phosphorylation. Endocrinology, 2001. 142(9): p. 3974-9.
    182. Braissant, O. and W. Wahli, Differential expression of peroxisome proliferator-activated receptor-alpha, -beta, and -gamma during rat embryonic development. Endocrinology, 1998. 139(6): p. 2748-54.
    183. Borchert, M., et al., Review of the pleiotropic effects of peroxisome proliferator-activated receptor gamma agonists on platelet function. Diabetes Technol Ther, 2007. 9(5): p. 410-20.
    184. Barak, Y., et al., PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell, 1999. 4(4): p. 585-95.
    185. Peplow, P.V. and G.D. Baxter, Electroacupuncture for control of blood glucose in diabetes: literature review. J Acupunct Meridian Stud, 2012. 5(1): p. 1-10.
    186. Szczudlik, A. and A. Lypka, Acupuncture-induced changes in human plasma insulin level. Acupunct Electrother Res, 1984. 9(1): p. 1-9.
    187. Stener-Victorin, E., R. Kobayashi, and M. Kurosawa, Ovarian blood flow responses to electro-acupuncture stimulation at different frequencies and intensities in anaesthetized rats. Auton Neurosci, 2003. 108(1-2): p. 50-6.
    188. Stener-Victorin, E., S. Fujisawa, and M. Kurosawa, Ovarian blood flow responses to electroacupuncture stimulation depend on estrous cycle and on site and frequency of stimulation in anesthetized rats. J Appl Physiol (1985), 2006. 101(1): p. 84-91.
    189. Noguchi, E., et al., The effect of electro-acupuncture stimulation on the muscle blood flow of the hindlimb in anesthetized rats. J Auton Nerv Syst, 1999. 75(2-3): p. 78-86.
    190. Mori, H., et al., Electro-acupuncture stimulation to a hindpaw and a hind leg produces different reflex responses in sympathoadrenal medullary function in anesthetized rats. J Auton Nerv Syst, 2000. 79(2-3): p. 93-8.
    191. Ohsawa, H., et al., Neural mechanism of pupillary dilation elicited by electro-acupuncture stimulation in anesthetized rats. J Auton Nerv Syst, 1997. 64(2-3): p. 101-6.
    192. Higashimura, Y., et al., Electro-acupuncture improves responsiveness to insulin via excitation of somatic afferent fibers in diabetic rats. Auton Neurosci, 2009. 150(1-2): p. 100-3.
    193. Liang, F., et al., Low-Frequency Electroacupuncture Improves Insulin Sensitivity in Obese Diabetic Mice through Activation of SIRT1/PGC-1alpha in Skeletal Muscle. Evid Based Complement Alternat Med, 2011. 2011: p. 735297.
    194. Chang SL, L.J., Heish CL, Cheng JT, Chang TL, Comparison of hypoglycemic effect in different acupoint response to 2 Hz electroacupuncture. The journal of chinese medicine, 2002. 13: p. 111-17.
    195. Lin, J.G., S.L. Chang, and J.T. Cheng, Release of beta-endorphin from adrenal gland to lower plasma glucose by the electroacupuncture at Zhongwan acupoint in rats. Neurosci Lett, 2002. 326(1): p. 17-20.
    196. Ishizaki, N., et al., Improvement in glucose tolerance as a result of enhanced insulin sensitivity during electroacupuncture in spontaneously diabetic Goto-Kakizaki rats. Metabolism, 2009. 58(10): p. 1372-8.
    197. Chang, S.L., et al., Involvement of serotonin in the hypoglycemic response to 2 Hz electroacupuncture of zusanli acupoint (ST36) in rats. Neurosci Lett, 2005. 379(1): p. 69-73.
    198. Tominaga, A., et al., Repeated application of low-frequency electroacupuncture improves high-fructose diet-induced insulin resistance in rats. Acupunct Med, 2011. 29(4): p. 276-83.
    199. Itoh, N., et al., Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest, 1993. 92(5): p. 2313-22.
    200. el-Mesallamy, H., S. Suwailem, and N. Hamdy, Evaluation of C-reactive protein, endothelin-1, adhesion molecule(s), and lipids as inflammatory markers in type 2 diabetes mellitus patients. Mediators Inflamm, 2007. 2007: p. 73635.
    201. Belfort, R., et al., Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes, 2005. 54(6): p. 1640-8.
    202. Ko, J., et al., cDNA microarray analysis of the differential gene expression in the neuropathic pain and electroacupuncture treatment models. J Biochem Mol Biol, 2002. 35(4): p. 420-7.
    203. Guo, J.C., et al., Modulation of the gene expression in the protective effects of electroacupuncture against cerebral ischemia: a cDNA microarray study. Acupunct Electrother Res, 2004. 29(3-4): p. 173-86.
    204. Kim, C.K., et al., Electroacupuncture up-regulates natural killer cell activity Identification of genes altering their expressions in electroacupuncture induced up-regulation of natural killer cell activity. J Neuroimmunol, 2005. 168(1-2): p. 144-53.
    205. Li, M. and Y. Zhang, Modulation of gene expression in cholesterol-lowering effect of electroacupuncture at Fenglong acupoint (ST40): a cDNA microarray study. Int J Mol Med, 2007. 19(4): p. 617-29.
    206. Wang, X.Y., et al., Electroacupuncture induced spinal plasticity is linked to multiple gene expressions in dorsal root deafferented rats. J Mol Neurosci, 2009. 37(2): p. 97-110.
    207. Wang, K., et al., Electroacupuncture frequency-related transcriptional response in rat arcuate nucleus revealed region-distinctive changes in response to low- and high-frequency electroacupuncture. J Neurosci Res, 2012. 90(7): p. 1464-73.
    208. Belivani, M., et al., Immediate effect of three different electroacupuncture protocols on fasting blood glucose in obese patients: a pilot study. Acupunct Med, 2015. 33(2): p. 110-4.
    209. Kim, S.K., et al., Gene Expression Profile of the Hypothalamus in DNP-KLH Immunized Mice Following Electroacupuncture Stimulation. Evid Based Complement Alternat Med, 2011. 2011: p. 508689.
    210. Sohn, S.H., et al., The genome-wide expression profile of electroacupuncture in DNP-KLH immunized mice. Cell Mol Neurobiol, 2010. 30(4): p. 631-40.
    211. Jiang, L.H. and L.L. Wang, [Gene chips-aided analysis on the profiles of hippocampal whole-genome expression in depression rats following electroacupuncture treatment]. Zhen Ci Yan Jiu, 2010. 35(2): p. 83-9.
    212. Huo, L.R., et al., The cortical and striatal gene expression profile of 100 hz electroacupuncture treatment in 6-hydroxydopamine-induced Parkinson's disease model. Evid Based Complement Alternat Med, 2012. 2012: p. 908439.
    213. Sluka, K.A. and D. Walsh, Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J Pain, 2003. 4(3): p. 109-21.
    214. Man, K.M., et al., Transcutaneous electrical nerve stimulation on ST36 and SP6 acupoints prevents hyperglycaemic response during anaesthesia: a randomised controlled trial. Eur J Anaesthesiol, 2011. 28(6): p. 420-6.
    215. Zhiyuan, W., et al., Effect of transcutaneous electrical nerve stimulation at acupoints on patients with type 2 diabetes mellitus: a randomized controlled trial. J Tradit Chin Med, 2015. 35(2): p. 134-40.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE