簡易檢索 / 詳目顯示

研究生: 古冠軒
Kuan-Hsuan Ku
論文名稱: DNPH與Cu(II)反應的動力學及反應機制探討
Kinetics and Mechanism of 2,4-Dinitrophenylhydrazine (DNPH) with Copper(II)
指導教授: 吳劍侯
Chien-Hou Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 2,4-dinitrophenylhydrazine銅錯合物動力學反應機制
外文關鍵詞: 2,4-dinitrophenylhydrazine, copper complexes, kinetics, mechansism
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用紫外可見光譜儀於25℃下偵測反應中2,4-dinitrophenylhydrazine (DNPH)的初始衰退速率以探討水相系統中DNPH與Cu(II)的動力學反應。DNPH為分析醛類廣泛使用的衍生試劑,由於DNPH結構中的hydrazine group容易被二價銅離子所氧化,因此造成在二價銅離子存在於系統中時,分析醛類會有嚴重的干擾。為了解此反應,實驗中探討了許多參數諸如:DNPH濃度、Cu(II)濃度、pH值、離子強度及溫度。DNPH衰退的反應速率分別隨DNPH濃度及Cu(II)濃度成一級反應,且DNPH會被質子化而形成HDNPH+,這兩個物種之間維持著平衡存在。利用Arrhenius equation和Eyring equation分別求得反應活化能為45.0 kJ/mol及反應的△H□為42.2 kJ/mol。整個系統的反應速率式可以用下列的方程式去描述:

    本研究利用紫外可見光譜儀、離子層析儀、電子順磁共振儀、高效率液相層析儀以及液相層析質譜儀等的儀器來進行中間產物與產物的分析。在氧化過程中,發現當消耗1莫耳的DNPH,會產生3–4莫耳的一價銅;藉著形成中間產物aryl自由基,進一步生成2,4-dinitrophenol為主要的最終產物。最後綜合以上實驗結果提出合理的反應機制。


    The kinetics and mechanism of oxidation of 2,4-dinitrophenylhydrazine (DNPH), a widely used derivatization reagent for analysis of aldehydes, with copper(II) in aqueous solution have been studied spectrophotometrically as a function of Cu(II) and DNPH concentrations at ionic strength (I = 1M) of NaCl. Since the hydrazine group of DNPH would be easily oxidized by Cu(II), serious interference for determination of aldehydes with Cu(II) was needed to be examined. The rate of the reaction was followed by monitoring the disappearance of the DNPH at 360 nm. System parameters such as pH, ionic strength, temperature and concentrations of Cu(II) and DNPH are examined. The rate of oxidation of DNPH is first order with respect to Cu(II) and DNPH concentrations. The oxidation of DNPH was studied at different temperatures (T = 293 – 313 K), and the active parameters Ea, △H□ and △S□ were evaluated. And the rate law of the whole system was followed as:

    The oxidation occur via aryl radical intermediate, to produce 2,4-dinitrophenol as final product. In the oxidation 3-4 mol of Cu(I) are produced by each mol of DNPH.

    總目錄 中文摘要………………………………………………………………….……………I 英文摘要……………………………………………………………...………………II 誌謝………………………………………………………………………………......III 目錄……………………………………………………………………..……………IV 圖目錄……………………………………………………………………..………..VII 表目錄………………………………………………………………………….……..X 第一章 前言..…………………………………………………………………………1 1.1 簡介...………………………………………………………………………..1 1.2 研究目的與動機...…………………………………………………………..1 第二章 文獻回顧...……..…………………………………………………………….2 2.1 Hydrazine的介紹...………………………………………………………......2 2.2 Hydrazine-like化合物的動力學及反應機制探討..………………………...2 2.2.1 Hydrazine的反應...…………………………………………………...2 2.2.2 R-hydrazine的反應...…………………………………………………3 2.2.3 Arylhydrazine的反應..……………………………………………….4 2.2.4 DNPH的反應...……………………………………………………….5 2.3 銅的介紹………………………………………………………………….....8 2.4 DNPH的應用………………………………………………………………..8 2.5 實驗原理介紹………………………………...……………………………..9 2.5.1 分子吸收光譜………..………………..……………………………..9 2.5.2 電子順磁共振(EPR)原理...………………………………………...10 第三章 實驗方法……………………………………………………………………11 3.1 實驗裝置…………………………………………………………………...11 3.1.1 紫外可見光譜儀(UV-Vis spectrometer)……………………………11 3.1.2 離子層析系統(Ion Chromatography system)………………………11 3.1.3 pH meter……………………………………………………………..11 3.1.4 電子順磁共振儀(EPR)...…………………………………………...11 3.1.5 高效率液相層析儀(HPLC)….…...………………………………..12 3.1.6 液相層析質譜儀(LC-MS)……………...………………………….12 3.2 實驗計算軟體(MINTEQ)……..………………………………………….12 3.3 實驗藥品...…………………………………………………………………14 3.3.1 藥品…………………………………………………………………14 3.3.2 母液配製……………………………………………………………15 3.4 分析流程…………………………………………………………………...15 3.4.1 使用UV/Vis觀察反應速率...………………………………………15 3.4.2 初始速率決定方法...……………………………………………….16 3.4.3 以離子層析儀(IC)量測溶液中NH4+濃度..………………………..22 3.4.4 一價銅量測…………………………………………………………22 3.4.5 利用電子順磁共振儀(EPR)量測自由基…...……………………..23 3.4.6 利用高效率液相層析儀搭配光電二極管陣列偵測器分離產物…23 3.4.7 利用液相層析質譜儀鑑定產物...………………………………….24 第四章 結果與討論…………………………………………………………………26 4.1 觀察不同pH值DNPH最大吸收波長的變化……...…………………......26 4.2 計算在不同pH值時DNPH的含量……………………………………….27 4.3 假定反應速率式………………………….………………………………..29 4.4 改變DNPH濃度………………………………………………………….29 4.5 改變Cu(II)濃度……………………………………………………………31 4.6 改變pH值觀察對反應速率的影響………..…….………………………..33 4.7 推導反應速率式…………………………………………………………...35 4.8 離子強度的影響…………………………………………………………...35 4.9 溫度的影響………………………………………………………………...37 4.10 推導反應機制……………..……………………………………………...45 4.11 一價銅量測……………..………………………………………………...46 4.12 利用電子順磁共振儀(EPR)量測R-Ar•…….……………..……………50 4.13 利用離子層析儀(IC)量測NH4+………...……………………………….51 4.14 利用Coupling reaction定性Arenediazonium ion的存在……………..53 4.15 利用高效率液相層析儀搭配光電二極管陣列偵測器分離產物...……..55 4.16 利用液相層析質譜儀鑑定產物………………………………………….63 4.17 合理的反應機制………………………………………………………….65 第五章 結論……..…………………………………………………………………..66 第六章 未來展望…………………………..………………………………………..67 參考文獻…..…………………………………………………………………………68 圖目錄 圖1-1 DNPH的衍生反應…….……………………………………………………….1 圖3-1 銅物種分佈圖...………………………..…………………………………….13 圖3-2 銅物種分佈圖(在1 M NaCl環境下).….……………..…………………….14 圖3-3 DNPH隨時間衰退之吸收圖譜…….………………………………………...16 圖3-4 DNPH吸收值衰減圖(pH=2.1)..……………………………………………17 圖3-5 DNPH初始速率決定圖(pH=2.1)....………………………………………..18 圖3-6 DNPH吸收值衰減圖(pH=6.0)...…………………………………………...18 圖3-7 DNPH初始速率決定圖(pH=6.0)…………………………………………..19 圖3-8 DNPH檢量線(pH=1.8)……………………………………………………..19 圖3-9 DNPH檢量線(pH = 5.16)…..………………………………………………..20 圖3-10 DNPH檢量線(pH = 6.0)….………………………………………………...20 圖3-11 DNPH檢量線(pH = 9.3)….………………………………………………...21 圖3-12 Cu(II)濃度的影響...…………………………………………………………21 圖3-13 Cu(I)加Bathocuproine於484 nm出現吸收峰...……………………………23 圖3-14 分析流程圖…………………………………………………………………25 圖4-1 觀察DNPH在不同pH值下的最大吸收光譜圖…..………………………..26 圖4-2 觀察DNPH在不同pH值下的最大吸收光譜圖……………………………27 圖4-3 DNPH在不同pH值下物種分佈圖……………………..……………………28 圖4-4 實驗數據求得K1值……………………………………………………….....29 圖4-5 改變DNPH濃度觀察其反應速率變化..……………………………………30 圖4-6 改變DNPH濃度觀察其反應速率變化(高Cu(II)濃度下)……...………….31 圖4-7 改變Cu(II)濃度觀察其反應速率變化………………………………………32 圖4-8 改變Cu(II)濃度觀察其反應速率變化(高DNPH濃度下)…..……………..33 圖4-9 不同pH值下反應速率的變化圖……….…………………………………...34 圖4-10 log([DNPH])對速率的變化圖………………………………………………34 圖4-11 觀察不同離子強度下對速率常數的影響……..…………………………..37 圖4-12 溫度對速率常數的影響………..…………..………………………………41 圖4-13 改變DNPH濃度觀察活化能的變化……..………………………………..41 圖4-14 改變Cu(II)濃度觀察活化能的變化………………………………………..42 圖4-15 1000/T對ln(k/T)的影響…………………………………………………….42 圖4-16 改變DNPH濃度比較△H□和△S□…………………………………………43 圖4-17 改變Cu(II)濃度比較△H□和△S□..…………………………………………43 圖4-18 假設之反應機制圖……...………………………………………………….46 圖4-19 觀察一價銅在484 nm的吸收光譜圖……………………………………...47 圖4-20 一價銅含量變化圖……………………………..…….…………………….48 圖4-21 修正之反應機制圖…………………………………………………………50 圖4-22 DNPH與Cu(II)反應的EPR光譜圖.………………………………………..51 圖4-23 NH4+離子層析圖……………………………………………………………52 圖4-24 NH4+之檢量線………………………………………………………………53 圖4-25 Coupling reaction的吸收光譜圖……………………………………………55 圖4-26 觀察反應達完成時間(pH = 6)………………………………….…………56 圖4-27 物種積分面積變化圖(pH = 6)……………………...……………………..57 圖4-28 定性反應後產物層析圖(pH=6,at 360 nm)…...…………………………57 圖4-29 觀察反應達完成時間(pH = 2.2)………………………………………..…59 圖4-30 物種積分面積變化圖(pH = 2.2)……………………………………….….59 圖4-31 定性反應後產物層析圖(pH=2.2,at 360 nm)……………………………60 圖4-32 定性反應後產物層析圖(pH=2.2,at 238 nm)……………………………60 圖4-33 2,4-dinitrophenol檢量線(HPLC-PDA)…………………………………….61 圖4-34 1,3-dinitrobenzene檢量線(HPLC-PDA)…………………………………...61 圖4-35 觀察2,4-dinitrophenol在360 nm的吸收圖………………………………..62 圖4-36 2,4-dinitrophenol檢量線(UV-Vis光譜儀)…………………………………63 圖4-37 DNPH質譜圖………………………………………………………………..64 圖4-38 加入0.1 mM Cu(II)反應2個小時質譜圖…….……………………………64 圖4-39 合理的反應機制圖…………………………………………………………65 表目錄 表2-1 比較不同Hydrazine-like化合物的反應動力學及反應機制探討…….……..7 表3-1 不同二價銅濃度下速率的比較……………………………………………..22 表3-2 離子層析儀參數…..…………….…………………..……………………….22 表3-3 液相層析質譜儀參數..………………………………………………………24 表4-1 不同離子強度下速率常數值……………………………………………..…36 表4-2 不同溫度下速率常數值…………………………………………………..…40 表4-3 在不同條件下活化能的比較………………………………………………..45 表4-4 改變DNPH濃度觀察一價銅產生量-[Cu(II)] = 0.1 mM…………………...48 表4-5 改變DNPH濃度觀察一價銅產生量-[Cu(II)] = 25 □M…………………….49 表4-6 改變Cu(II)濃度觀察一價銅產生量-[DNPH] = 50 □M………...…………...49 表4-7 不同DNPH濃度下NH4+的生成量………………………………………….53 表4-8 改變DNPH濃度比較產物的生成量………………………………………..58 表4-9 各個物種的m/z值…………………………………….……………………..64

    Achatz, S.; Lörinci, G.; Hertkorn, N.; Gebefügi, I.; Kettrup, A.,Disturbance of the determination of aldehydes and ketones: Structural elucidation of degradation products derived from the reaction of 2,4-dinitrophenylhydrazine (DNPH) with ozone. Fresenius Journal of Analytical Chemistry 1999, 364, 141-146.
    Atkinson, R.; Carter, W. P. L.,Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chemical Reviews 1984, 84, 437-470.
    Banerjee, S.; Jr., E. J. P.; Sikka, H.; Kelly, C. M.,Kinetics of oxidation of methylhydrazine in water. Factors controlling the formation of 1,1-dimethylnitrosamine. Chemosphere 1984, 13, 549-559.
    Bernheim, P.; Dobos, A.; Doherty, A. M. M.; Haine, N.; Stedman, G.,Kinetics and mechanism of the reaction of nitrous acid with 2,4-dinitrophenylhydrazine. Journal of the Chemical Society, Perkin Transactions 2 1996, 275-280.
    Besada, A.,Analytical use of copper(II)-neocuproine in the spectrophotometric determination of hydrazines. Analytical Letters 1988, 21, 1917-1925.
    Bravo-Díaz, C.; González-Romero, E.,A novel method for the determination of vitamin C in natural orange juices by electrochemical monitoring of dediazoniation of 3-methylbenzenediazonium tetra‾uoroborate. Analytica Chimica Acta 1999, 385, 373-384.
    Brignell, P. J.; Johnson, C. D.; Kartritzky, A. R.; Shakir, N.; Tarhan, H. O.; Walker, G.,Acidity functions and protonation of weak bases. Part V. second protonation of diacid bases. Journal of the Chemical Society, B 1967, 1233-1235.
    Buldt, A.; Karst, U.,1-Methyl-1-(2,4-dinitrophenyl)hydrazine as a New Reagent for the HPLC Determination of Aldehydes. Analytical Chemistry 1997, 69, 3617-3622.
    Cai, R.; Kubota, Y.; Fujishima, A.,Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. Journal of Catalysis 2003, 219, 214-218.
    Chen, J. P.; Lim, L. L.,Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere 2002, 49, 363-370.
    Cohen, T.; Albert G. Dietz, J.; Miser, J. R.,A Simple Preparation of Phenols from Diazonium Ions via the Generation and Oxidation of Aryl Radicals by Copper Salts. Journal of Organic Chemistry 1977, 42, 2053-2058.
    Cotsaris, E.; Nicholson, B. C.,Low level determinaton of formaldehyde in water by High-performance Liquid Chromatography. Analyst 1993, 118.
    Erlenmeyer, H.; Flierl, C.; Sigel, H.,Metal ions and hydrogen peroxide. XXI. On the kinetics and mechanism of the reactions of hydrogen peroxide with hydrazine or hydroxylamine, catalyzed by Cu2+ and by the Cu2+-2,2'-bipyridyl complex. Journal of the American Chemical Society 1969, 91, 1065-1071.
    Fagan, J. M.; Sleczka, B. G.; Sohar, I.,Quantitation of oxidative damage to tissue proteins. International Journal of Biochemistry and Cell Biology 1999, 31, 751-757.
    Gannett, P. M.; Shi, X.; Lawson, T.; Kolar, C.; Toth, B.,Aryl Radical Formation during the Metabolism of Arylhydrazines by Microsomes. Chemical Research in Toxicology 1997, 10, 1372-1377.
    Godejohann, M.; Preiss, A.,Application of On-Line HPLC-1H NMR to Environmental Samples: Analysis of Groundwater near Former Ammunition Plants. Analytical Chemistry 1997, 69, 3832-3837.
    Gupta, A. K.; Gupta, B.; K.Gupta, A.; K.Gupta, Y.,Kinetics and Mechanism of Oxidation of 2,4-Dinitrophenylhydrazine, p-N itrophenylhydrazine, and p-Tolylhydrazine with Potassium Hexacyanoferrate(iii) in Acidic Perchlorate Media. Journal of the Chemical Society, Dalton Transactions 1984, 12, 2599-2604.
    Hanson, P.; Rowell, S. C.; Taylor, A. B.; Walton, P. H.; Timms, A. W.,Sandmeyer reactions. Part 6. A mechanistic investigation into the reduction and ligand transfer steps of Sandmeyer cyanation. Journal of the Chemical Society, Perkin Transactions 2 2002, 1126-1134.
    Kempter, C.; BuÈldt, A.; Karst, U.,Workplace monitoring of oximes using 2,4-dinitrophenylhydrazinecoated silica gel cartridges and liquid chromatography. Analytica Chimica Acta 1999, 388, 181-186.
    Khan, M. M. T.; Rao, A. P.; Chatterjee, D.; S., S. K.,Kinetics slnd mechanism of the oxidation of hydrazine with the dichlorotriaquoruthenium(V)-oxo complex in aqueous solution. Journal of Molecular Catalysis 1992, 73, 17-21.
    Kieber, R. J.; Mopper, K.,Determination of Picomolar Concentrations of Carbonyl Compounds in Natural Waters, Including Seawater, by Liquid Chromatography. Environmental Science and Technology 1990, 24, 1477-1481.
    Kou, F.; Zhu, S.; Lin, H.; Chen, W.; Chen, Y.; Lin, M.,Kinetics and mechanism of the acid dissociation of copper(II) complex of novel C-functionalized macrocyclic dioxotetraamines. Polyhedron 1997, 16, 2021-2028.
    Latimer, W. M.,The oxidation state of the elements and their potentils in aqueous solutions. 2nd ed.; Prentic-Hall: Englewood Cliffs, N. J., 1952.
    Levine, I. N.,Physical chemistry. 5th ed.; McGraw-Hill: New York, 2002.
    Lunn, G.; Sansone, E. B.,Oxidation of 1,1-dimethylhydrazine (UDMH) in aqueous solution with air and hydrogen peroxide. Chemosphere 1994, 29, 1577-1590.
    Moliner, A. M.; Street, J. J.,Decompostion of hydrazine in aqueous solutions. Journal of Environment Quality 1989, 18, 483-487.
    Nascimento, R. F.; Marques, J. C.; Neto, B. S. L.; Keukeleire, D. D.; Franco, D. W.,Qualitative and quantitative high-performance liquid chromatographic analysis of aldehydes in Brazilian sugar cane spirits and other distilled alcoholic beverages. Journal of Chromatography A 1997, 782, 13-23.
    Oliva-Teles, M. T.; Paiga, P.; Delerue-Matos, C. M.; Alvim-Ferraz, M. C. M.,Determination of free formaldehyde in foundry resins as its 2,4-dinitrophenylhydrazone by liquid chromatography. Analytica Chimica Acta 2002, 467, 97-103.
    Plesnicar, B.; Tuttle, T.; Cerkovnik, J.; Koller, J.; Cremer, D.,Mechanism of Formation of Hydrogen Trioxide (HOOOH) in the Ozonation of 1,2-Diphenylhydrazine and 1,2-Dimethylhydrazine: An Experimental and Theoretical Investigation. Journal of the American Chemical Society 2003, 125, 11553-11564.
    Schmidt, E. W.,One hundred years of hydrazine chemistry. 3rd ed.; F.L. Wiseman: Panama City, 1988; p 4-16.
    Siddagangappa, S.; Mayanna, S. M.; Pushpanadan, F.,2,4-dinitrophenylhydrazine as a corrosion inhibitor for copper in sulphuric acid. Anti-Corros. Methods Mater. 1976, 23, 11-13.
    Solomons, T. W. G.; Fryhle, C. B.,Organic Chemistry. 7th ed.; Wiley: New York, 2000.
    Sun, H.; Lin, H.; Zhu, S.; Zhao, G.; Su, X.; Chen, Y.,Kinetics and mechanism of the acid dissociation of copper(II) complex of 1,10-phenanthroline tetradentate diamine ligands. Polyhedron 1999, 18, 1045-1048.
    Sykora, J.,Photochemistry of copper complexes and their environmental aspects. Coordination Chemistry Reviews 1997, 159, 95-108.
    Tuazon, E. C.; Carter, W. P. L.; Winer, A. M.; James N. Pitts, J.,Reactions of hydrazine with ozone under simulated atomspheric conditions. Environmental Science and Technology 1981, 15, 823-828.
    Uchiyama, S.; Matsushima, E.; Aoyagi, S.; Ando, M.,Simultaneous Determination of C1-C4 Carboxylic Acids and Aldehydes Using 2,4-Dinitrophenylhydrazine-Impregnated Silica Gel and High-Performance Liquid Chromatography. Analytical Chemistry 2004, 76, 5849-5854.
    Varea, T.; González-Núñez, M. E.; Rodrigo-Chiner, J.; Asensio, G.,Aryl radicals by copper(II) oxidation of hydrazines: A new method for the oxidative and arylation of alkenes. Tetrahedron Letters 1989, 30, 4709-4712.
    Vogel, M.; Büldt, A.; Karst, U.,Hydrazine reagents as derivatizing agents in environmental analysis – a critical review. Fresenius Journal of Analytical Chemistry 2000, 366, 781-791.
    Wellman, C. R.; Ward, J. R.; Kuhn, L. P.,Kinetics of the oxidation of hydrazine by hydrohen peroxide, catalyzed by hydrated copper(II). Journal of the American Chemical Society 1976, 98, 1683-1684.
    Whitlock, L. R.; Siggia, S.; Smola, J. E.,Spectrophotometric Analysis of Phenols and of Sulfonates by Formation of an Azo Dye. Analytical Chemistry 1972, 40, 532-536.
    Yang, C.-Y.; Gu, Z.-W.; Yang, M.; Lin, S.-N.; Siuzdak, G.; Smith, C. V.,Identification of Modified Tryptophan Residues in Apolipoprotein B-100 Derived from Copper Ion-Oxidized Low-Density Lipoprotein. Biochemistry 1999, 38, 15903-15908.
    Zegota, H.,High-performance liquid chromatography of methanol released from pectins after its oxidation to formaldehyde and condensation with 2,4-dinitrophenylhydrazine. Journal of Chromatography A 1999, 863, 227-233.
    林奕良.水相中銅與胺基酸錯合物之光分解產物研究: 醛的定量與分析. 碩士論文, 國立清華大學, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE