研究生: |
劉淳亦 Liu, Chun-Yi |
---|---|
論文名稱: |
金屬矽化物與矽異質結構奈米線陣列之製備與性質研究 The Fabrication and Properties of Heterostructured Metal Silicide/Si Nanowire Arrays |
指導教授: |
陳力俊
Chen, Lih-Juann 蔡哲正 Tsai, Cho-Jen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 100 |
中文關鍵詞: | 金屬矽化物 、異質結構 |
外文關鍵詞: | Metal Silicide, heterostructure |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ordered and heterostructured NiSi2/Si nanowire arrays have been successfully fabricated by reacting nickel thin films on silica-coated ordered Si NW arrays. The coating of thin silica shell on Si NW arrays has the effects of limiting the diffusion of nickel during silicidation process to achieve the single crystalline NiSi2 NWs and maintain the straightness of the nanowire. The work function of Si NWs with NiSi2 tip (4.88 eV) was lower than the original Si NW arrays (5.01 eV). Excellent field emission properties were found for NiSi2/Si NW arrays. The excellent field emission characteristics are attributed to the well-aligned and highly ordered arrangement of the heterostructured NiSi2/Si field emitters. The characteristic of the Schottky junction were also verified by the I-V measurement. The weak ferromagnetic properties were also determined by the SQUIDs.
The heterostructured CoSi2/Si and PtSi/Si NW arrays have been also fabricated by silicidation of Si NW with a Co and Pt film, respectively. The CoSi2 is of platelet shape and forms endotaxial structure in Si NWs. The results indicate that the thin SiOx coated on Si NW arrays will be effective to obstruct the diffusion of the Co atoms and form platelet-shaped CoSi2.
1.R. P. Feynman, “There’s Plenty of Room at the Bottom,” at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959).
2.N. Taniguchi, “On the Basic Concept of ‘Nano-Technology,” at International Conference of Product Engineers. Tokyo, Japan: Japan Society of Precision Engineering (1974).
3.C. N. R. Rao, A. Muller, and A. K. Cheetham, “The Chemistry of Nanomaterials,” Wiley-VCH Verlag GmbH & Co. KGaA, Hong Kong (2004).
4.J. A. McCleverty, and T. J. Meyer, “Comprehensive Coordination Chemistry II: from Biology to Nanotechnology,” Elsevier Pergamon, Boston (2004).
5.R. R. H. Coombs, and D. W. Robinson, “Nanotechnology in Medicine and the Biosciences,” Gordon and Breach Publishers (1996).
6.M. Patlak, “Nanotechnology Takes a New Look at Old Drugs,” J. National Cancer Institute 102, 1753-1755 (2010).
7.P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996).
8.B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
9.M. Krans, J. M. V. Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. DeJongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 375, 767-769 (1995).
10.K. Likharev and T. Claeson, “Single Electronics,” Sci. Am. 266, 80-85 (1992).
11.G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res. 32, 415-423 (1999).
12.M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, “Resonant Tunneling of Electrons via 20 nm Scale InAs Quantum Dot and Magnetotunneling Spectroscopy of its Electronic States,” Appl. Phys. Lett. 70, 105-107 (1996).
13.J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science 286, 1550-1552 (1999).
14.C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic Transport in Y-Junction Carbon Nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000).
15.M. T. Bjork, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire Resonant Tunneling Diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002).
16.P. Yang, R. Yan, and M. Fardy, “Semiconductor Nanowire: What’s Next,” Nano Lett. 10, 1529-1536 (2010).
17.Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length and Density,” Adv. Mater. 19, 744-748 (2007).
18.K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of Single-crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Adv. Funct. Mater. 16, 387-394 (2006).
19.Z. Li, S. Jin, G. Mantini, M. Y. Lu, H. Fang, C. Falconi, L. J. Chen, and Z. L. Wang, “Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array,” Nano Lett. 9, 3575-3580 (2009).
20.W. Chern, K. Hsu, I. S. Chun, B. P. D. Azeredo, N. Ahmed, K.-H. Kim, J.-M. Zuo, N. Fang, P. Ferreira, and X. Li, “Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays,” Nano Lett. 10, 1582-1588 (2010).
21.E. W. Wang, P. E. Sheehan, and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277, 1971-1975 (1997).
22.J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, 1471-1473 (2000).
23.L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B 47, 16631-16634 (1993).
24.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
25.A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998).
26.X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, 298-302 (2000).
27.J. W. Dailey, J. Taraci, T. Clement, D. J. Smith, J. Drucker, and S. T. Picraux, “Vapor-liquid-solid Growth of Germanium Nanostructures on Silicon,” J. Appl. Phys. 96, 7556-7567 (2004).
28.H. Y. Peng, Z. W. Pan, L. Xu, X. H. Fan, N. Wang, C.-S. Lee, and S.-T. Lee, “Temperature Dependence of Si Nanowire Morphology,“ Adv. Mater. 13, 317-320 (2001).
29.J. Zhang, L. Zhang, X. Peng, X. Wang, “Vapor-solid Growth Route to Single-crystalline Indium Nitride Nanowires,“ J. Mater. Chem. 12, 802-804 (2002).
30.B. Y. Li, Y. Bando, T. Sato, K. Kurashima, “ZnO Nanobelts Grown on Si Substrate,” Appl. Phys. Lett. 81, 141-146 (2002).
31.T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid Growth of Crystalline Ⅲ-Ⅴ Semiconductors: an Analogy to Vapor-liquid-solid Growth,” Science 270, 1791-1794 (1995).
32.X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, “High Yield Solution-liquid-solid Synthesis of Germanium Nanowires,” J. Am. Chem. Soc. 127, 15718-15719 (2005).
33.Y. H. Tang, Y. F. Zhang, H. Y. Peng, N. Wang, C. S. Lee, and S. T. Lee, “Si Nanowires Synthesized by Laser Ablation of Mixed SiC and SiO2 Powders,” Chem. Phys. Lett. 314, 16-20 (1999).
34.D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, “Small-diameter Silicon Nanowire Surfaces,” Science 299, 1874-1877 (2003).
35.X.-M. Meng, J.-Q Hu, Y. Jiang, C.-S. Lee, and S.-T. Lee, “Oxide-assisted Growth and Characterization of Ge/SiOx Nanocables,” Appl. Phys. Lett. 83, 2241-2243 (2003).
36.B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of Vertically Aligned Si Wire Arrays over Large Areas (>1 cm2) with Au and Cu Catalysts,” Appl. Phys. Lett. 91, 103110 (2007).
37.M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications,” Nature Mater. 9, 239-244 (2010).
38.S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and Axel Scherer, “Tunable Visible and Near-IR Emission from Sub-10 nm Etched Single-Crystal Si Nanopillars,” Nano Lett. 10, 4423-4428 (2010).
39.K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, Highly Localized Site-specific Etching of Si and Formation of Single-crystalline Si Nanowires in Aqueous Fluoride Solution,” Chem. Eur. J. 12, 7942-7947 (2006).
40.K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching,” Adv. Funct. Mater.18, 3026-3035 (2008).
41.H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17, 3768-3774 (2006).
42.X. Li and W. Bohn, “Metal-assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77, 2572-2574 (2000).
43.M. Schade, N. Geyer, B. Fuhrmann, F. Heyroth, and H.S. Leipner, “High-resolution Analytical Electron Microscopy of Catalytically Etched Silicon Nanowires,” Appl. Phys. A 95, 325-327 (2009).
44.L. J. Chen, “Metal silicides: an Integral Part of Microelectronics,” JOM 57 (9), 24-30 (2005).
45.K. Maex, “Silicdes for Integrated Circuits: TiSi2 and CoSi2,” Mater. Sci. Eng. R 11, 53-153 (1993).
46.P. H. Yeh, C. H. Yu, L. J. Chen, H. H. Wu, P. T. Liu, and T. C. Chang, “Low-power Memory Device with NiSi2 Nanocrystals Embedded in Silicon Dioxide Layer,” Appl. Phys. Lett. 87, 193504 (2005).
47.S. Y. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared Waveguide-based Nickel Silicide Schottky-barrier Photodetector for Optical Communications,” Appl. Phys. Lett. 92, 081103 (2008).
48.M. K. Datta, S. K. Pabi, and B. S. Murty, “Phase Fields of Nickel Silicide Obtained by Mechanical Alloying in the Nanocrystalline State,” J. Appl. Phys. 87, 8393-8400 (2000).
49.J. Crofton, P. G. Mcmullin, J. R. Williams and M. J. Bozack, “High-temperature Ohmic Contact to N-type 6H-SiC Using Nickel,” J. Appl. Phys., 77, 1317-1319 (1995).
50.M. K. Datta, S. K. Pabi, and B. S. Murty, “Thermal Stability of Nanocrystalline Ni Silicides Synthesized by Mechanical Alloying,” Mater. Sci. Eng. A284, 219-225 (2000).
51.G. Majni, M. Costato, and F. Panini, “The Growth Processes of Thin Film Silicides in Si/Ni Planar Systems,” Thin Solid films 125, 71-78 (1985).
52.A. L. Schmitt, J. M. Higgins, J. R. Szczech, and S. Jin, “Synthesis and Applications of Metal Silicide Nanowires,” J. Mater. Chem. 20, 223-235 (2010).
53.B.-J. Lee, “Thermodynamic Analysis of Solid-state Metal/Si Interfacial Reactions,” J. Mater. Res. 14, 1002-1017 (1999).
54.Z.-L. Peng, S. Liang, and L.-G. Deng, “Transition Metal Silicide Nanowires Growth and Electrical Characterization,” Chin. Phys. Lett. 26, 127301-1-4 (2009).
55.A. Vantomme, “Nucleation, Diffusion and Texture during Growth of CoNi-silicides,” Instituut voor Kern- en Stralingsfysica and INPAC KU Leuven: Belgium (2007).
56.R. T. Tung, “Epitaxial CoSi2 and NiSi2 Thin Films,” Mater. Chem. Phys. 32, 107-133 (1993).
57.R.T. Tung, “Oxide Mediated Epitaxy of CoSi2 on Silicon,” Appl. Phys. Lett. 68, 3461-3464 (1996).
58.C. Detavernier, C. Lavoie, and R. L. V. Meirhaeghe, “CoSi2 Formation in the Presence of Ti, Ta or W,” Thin Solid Films 468, 174-182 (2004).
59.R. K. K. Chong, M. Yeadon, W. K. Choi, E. A. Stach, and C. B. Boothroyd, “Nitride-mediated Epitaxy of CoSi2 on Si (001),” Appl. Phys. Lett. 82, 1833-1835 (2003).
60.C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, and L. J. Chen, “Vertically Well-aligned Epitaxial Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties,” Appl. Phys. Lett. 93, 113109 (2008).
61.J. A. Kittl, A. Lauwers, C. Demeurisse, C. Vrancken, S. Kubicek, P. Absil, S. Biesemans, C. Detavernier, J. Jordan-Sweet, and C. Lavoie, “Direct Evidence of Linewidth Effect: Ni31Si12 and Ni3Si Formation on 25 nm Ni Fully Silicided Gates,” Appl. Phys. Lett. 90, 172107 (2007).
62.J. T. Sheu, S. P. Yeh, C. H. Lien, and S. T. Tsai, “Fabrication and Electrical Characterization of Nanoscaled-Schottky Diodes Based on Metal Silicide/Silicon Nanowires with Scanning Probe Lithography and Wet Etching,” Jpn. J. Appl. Phys. 45, 3688-3689 (2006).
63.C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, and L. J. Chen,“Free-standing Single-crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties Array,” J. Phys. Chem. C 113, 2286-2289 (2009).
64.ASM International’s Binary Alloy Phase Diagrams, Second Edition, CD-ROM, ASM International, Materials Park, OH.
65.S. L. Cheng, C. H. Chung, and C. H. Lee, “Fabrication of Vertically Aligned Silicon Nanowire Arrays and Investigation on the Formation of the Nickel Silicide Nanowires,” IEEE Conf. Electron Devices and Solid-State Circuits pp.121-124(2007).
66.K. N. Tu, W. K. Chu, and J. W. Mayer, “Structure and Growth Kinetics of Ni2Si of Si,” Thin Solid Films 25, 403-413 (1975).
67.J. O. Olowolafe, M.-A Nicolet, and J. W. Mayer, “Influence of the Nature of the Si Substrate on Nickel Silicide Formed from Thin Ni Films,” Thin Solid Films 38, 143-150 (1976).
68.C.-D Lien, M. A. Nicolet, and S. S. Lau, “Kinetics of Silicides on Si(100) and Evaporated on Si Substrates,” Thin Solid Films 143, 63-67 (1986).
69.F. d’Heurle, C. S. Petersson, J. E. E. Baglin, S. J. La Placa, and C. Y. Wong, “Formation of Thin Film of NiSi: Metastable Structure, Diffusion Mechanisms in Intermetallic Compounds,” J. Appl. Phys. 55, 4208-4218 (1984).
70.C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, and D. R. Evans, “Directed Growth of Nickel Silicide Nanowires,” Appl. Phys. Lett. 84, 1389-1391 (2004).
71.Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature 430, 61-65 (2004).
72.Y. C. Lin, Y. Chen, D. Xu, and Y. Huang, “Growth of Nickel Silicides in Si and Si/SiOx Core/Shell Nanowires,“ Nano Lett. 10, 4721-4726 (2010).
73.W. M. Weber, L. Geelhaar, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Pamler, C. Cheze, H. Riechert, P. Lugli, and F. Kreup, “Silicon-nanowire Transistors with Intruded Nickel-Silicide Contacts,” Nano Lett. 6, 2660-2666 (2006).
74.ASM International’s Binary Alloy Phase Diagrams, Second Edition, CD-ROM, ASM International, Materials Park, OH.
75.J.-J. Chang, C.-P. Liu, T.-E. Hsieh, Y.-L. Wang, “The Study of Diffusion and Nucleation for CoSi2 Formation by Oxide-mediated Cobalt Silicidation,” Surface & Coatings Technology 200, 3314-3318 (2006).
76.C.-I. Tsai, P.-H. Yeh, C.-Y. Wang, H.-W. Wu, U.-S. Chen, M.-Y. Lu, W.-W. Wu, L.-J. Chen, and Z.-L. Wang, “Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties,” Crystal Growth & Design 9, 4514-4518 (2009).
77.A. M. Mohammad, S. Dey, K.-K. Lew, J. M. Redwing, and S. E. Mohney, “Fabrication of Cobalt Silicide Nanowire Contacts to Silicon Nanowires,” J. Electrochem. S. 150, G577-G580 (2003).
78.Z. Zhang, L. Liu, T. Shimizu, S. Senz, and U. Gosele, “Synthesis of Silicon Nanotubes with Cobalt Silicide Ends Using Anodized Aluminum Oxide Template,” Nanotechnology 21, 055603 (2010).
79.Y.-C. Chou, W.-W. Wu, S.-L. Cheng, B.-Y. Yoo, N. Myung, L.-J. Chen, and K. N. Tu, “In-situ TEM Observation of Repeating Events of Nucleation in Epitaxial Growth of Nano CoSi2 in Nanowires of Si,” Nano Lett. 8, 2194-2199(2008).
80.M. K. Niranjan, S. Zollner, L. Kleinman, and A. A. Demkov, “Theoretical Investigation of PtSi Surface Energies and Work Functions,” Phys. Rev. B 73, 195332 (2006).
81.H. Bentmann, A. A. Demkov, R. Gregory, and S. Zollner, “Electronic, Optical, and Surface Properties of PtSi Thin Films,” Phys. Rev. B 78, 205302 (2008).
82.B. Liu, Y. Wang, S. Dilts, T. S. Mayer, and S. E. Mohney, “Silicidation of Silicon Nanowires by Platinum,” Nano Lett. 7, 818-824 (2007).
83.J. M. Poate, K. N. Tu, and J. W. Mayor, “Thin Films-interdiffusion and Reactions,” J. Electrochem. Soc. 126, 418C-418C (1979).
84.M. J. H. V. Dal, G. Pourtois, J. Cunniffe, A. Veloso, A. Lauwers, K. Maex, and J. A. Kittl, “Effect of SIIS on Work Function of Self-aligned PtSi FUSI Metal-gated Capacitors,” IEEE Trans. Electro. Dev. 53, 1180-1185 (2006).
85.S. M. Banihashemian, H. Hajghassem, A. Erfanian, M. Aliahmadi, M. Mohtashamifar, and S. M. Mosakazemi, “Observation and Measurement of Negative Differential Resistance on PtSi Schottky Junctions on Porous Silicon,” Sensors 10, 1012-1020 (2010).
86.P. Gas, F. M. d’Heurle, F. K.LeGoues, and S. J. LaPlaca, “Formation of Intermediate Phases, Ni3Si2 and Pt6Si5: Nucleation, Identification, and Resistivity,” J Appl. Phys. 59, 3458-3466 (1986).
87.T. Stark, H. GruÈnleitner, M. Hundhausen, and L. Ley, “Deriving the Kinetic Parameters for Pt-silicide Formation from Temperature Ramped In-situ Ellipsometric Measurements,” Thin Solid Films 358, 73-79 (2000).
88.G. Larrieu, E. Dubois, X. Wallart, X. Baie, and J. Katcki, “Formation of Platinum-based Silicide Contacts: Kinetics, Stoichiometry, and Current Drive Capabilities,” J. Appl. Phys. 94, 7801-7810 (2003).
89.A. Laszcz, J. Katcki, J. Ratajczak, A. Czerwinski, N. Breil, G. Larrieu, and E. Dubois, “TEM Study of PtSi Contact Layers for Low Schottky Barrier MOSFETs,” Nucl. Instrum. Meth. B 253, 274-277 (2006).
90.H. Kobayashi, T. Yuasa and K. Yamanaka, K. Yoneda, and Y. Todokoro, “Mechanism of Platinum-enhanced Oxidation of Silicon at Low Temperatures,” J. Chem. Phys. 109, 4997-5001 (1998).
91.Z. Zhang, P.-E. Hellstrom, J. Lu, M. Ostling, and S.-L. Zhang, “A Novel Self-aligned Process for Platinum Silicide Nanowires,” Microelectron. Eng. 83, 2107-2111 (2006).
92.Y.-C. Lin, K.-C. Lu, W.-W. Wu, J. Bai, L. J. Chen, K. N. Tu, and Y. Huang, “Single Crystalline PtSi Nanowires, PtSi/Si/PtSi Nanowire Heterostructures, and Nanodevices,” Nano Lett. 8, 913-918 (2008).
93.E. Conforto and P. E. Schmid, “Platinum Silicide Phase Transformations Controlled by a Nanometric Interfacial Oxide Layer,” Thin Solid Films 516, 7467-7474 (2008).