簡易檢索 / 詳目顯示

研究生: 謝和峯
Hsieh, He-Feng
論文名稱: 原行星盤中處於共振軌道的微行星之動力學研究
Dynamics of Planetesimals Trapped in Mean Motion Resonances in Protoplanetary Disks
指導教授: 江瑛貴
Jiang, Ing-Guey
口試委員: 潘國全
Pan, Kuo-Chuan
林明楷
Lin, Min-Kai
嚴健彰
Yen, Chien-Chang
辜品高
Gu, Pin-Gao
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 95
中文關鍵詞: 微行星共振軌道數值模擬
外文關鍵詞: planetesimal, resonance trapping, numerical simulation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在原始行星盤中,微行星因氣體阻滯力而向中心的恆星遷移。若其軌道內有一行星,在此行星的重力影響下,微行星可被行星共振陷獲而停止遷移。藉由引入微行星運動方程式之高階項,我們重新推導處於平衡態下的微行星其離心率,與可被共振陷獲的微行星之最小半徑。在 j : (j + 1) 外部共振情況下, 平衡態下的微行星其離心率應較文獻值高上 10%— 40%,而最小半徑則小上約莫十倍。此預測與多體模擬軟體 REBOUND 之模擬結果相符。我們並推導出微行星離心率其增長時間。此增長時間為 j、平衡態下的微行星離心率、及微行星的史托克斯數之一函數。
    此理論分析建基於此原始行星盤的氣體呈軸對稱分佈,然而行星的重力會於行星盤引起非軸對稱之結構(例如旋臂)。藉由流體軟體 FARGO3D 的幫助,我們模擬處於非軸對稱行星盤的微行星之演化,並探討非軸對稱結構對其之影響。我們發現行星盤的演化會影響並降低微行星其離心率。此乃因行星盤上之氣體會於行星外堆積,使共振軌道周圍的氣體分佈變得平緩,進而減少處於平衡態下的微行星其離心率。然而,我們亦發現若行星盤被高度擾動,即使考量行星盤之氣體演化,微行星其離心率仍較理論值低。此偏差似與非軸對稱之結構相關,但仍須進一步的討論。於最小半徑,我們發現對於特定大小下之微行星可被短暫共振陷獲,並最終因行星盤演化而逃脫共振陷獲。


    We revisit the resonance trapping that the drag-induced drifting planetesimals
    are halted and captured into mean motion resonances due to the gravitational force from
    the inner planets.
    By including the high order $e^3$ term in the equations of motion of gas drag,
    we revise the analytical expressions,
    which predict the equilibrium eccentricity of resonant planetesimals
    and the minimum size of planetesimal that can trigger resonance trapping,
    for $j:(j + 1)$ exterior resonances.
    We find the equilibrium eccentricity is $10\% - 40\%$ times larger,
    and the minimum size is $10$ times smaller,
    for planetesimals trapped in resonances with small $j$.
    The revised expressions are consistent with the \textit{N}-body simulation results
    generated by the REBOUND code.
    We also derive the expression of the growth time of planetesimal eccentricity.
    The growth time depends on $j$, the equilibrium eccentricity,
    and the Stokes number of the planetesimal.
    For planetesimals with larger size,
    the required growth time would be longer.

    The analytical works are based on the assumption that the disk is axisymmetric.
    However, the presence of planets could generate asymmetric structures (e.g., spiral arms)
    so that the disk is no longer axisymmetric.
    We further perform 2D hydrodynamic simulations using FARGO3D
    to study the dynamics of resonant planetesimals in an asymmetric gaseous disk.
    We find the eccentricity of resonant planetesimals are reduced due to the evolved density profile.
    The viscous evolution causes the gas at the outer disk migrates inward
    and accumulates outside the planet due to the planet's gravity,
    resulting in the flatter density profile in the vicinity of resonance locations
    and the smaller equilibrium eccentricity.
    However, in part of the simulations where the planet is massive,
    the planetesimal eccentricity is smaller than the equilibrium eccentricity
    evaluated using the evolved density profile.
    We find the deviation in eccentricity is more pronounced if the disk is highly disturbed,
    which seems to be related to the asymmetric structures in the disk.
    On the minimum size,
    we find that for planetesimals in sizes of a certain range,
    they can be transiently trapped into resonances,
    and will eventually leave the resonance due to the disk evolution.

    1 Introduction 1 2 Resonance Trapping 5 2.1 GasDrag ................................... 5 2.1.1 StoppingTime ............................ 9 2.1.2 EquationsofMotionsofParticlesunderDrag ..................... 10 2.2 MeanMotionResonances........................... 11 2.2.1 EquationsofMotionofBodiesinResonances ..................... 12 2.3 ResonanceTrapping ............................. 13 2.3.1 Revised Expression of the Equilibrium Eccentricity ..................... 15 2.3.2 RevisedExpressionoftheMinimumSize ..................... 16 2.3.3 GrowthTimeofEccentricity..................... 18 3 The Dynamics of Resonant Planetesimals in Axisymmetric Disks 19 3.1 SimulationSetup ............................... 19 3.2 EquilibriumEccentricity ........................... 20 3.2.1 TheGrowthTimeofEccentricity .................. 25 3.3 TheMinimumSize .............................. 27 4 Numerical Method for FARGO3D 29 4.1 NumericalSchemesforGasDrag ...................... 30 4.2 CodeTest................................... 32 4.2.1 DriftVelocity............................. 32 4.2.2 CodeComparisonwithMN2012................... 37 5 The Dynamics of Resonant Planetesimals in Asymmetric Disks 41 5.1 SimulationParameters ............................ 41 5.1.1 DiskProfile.............................. 41 5.1.2 PlanetandPlanetesimalProfiles................... 43 5.2 TheDynamicsofPlanetesimalsintheStandardModel ..................... 46 5.2.1 Semi-majorAxis ........................... 53 5.2.2 EquilibriumEccentricity ....................... 58 5.3 DependenceontheInitialDensitySlope................... 71 5.4 TheMinimumSizeofResonanceTrapping ................. 81 6 Concluding Remarks 89 Appendix A The Radial Force from an Axisymmetric Disk 91 A.1 BinneyandTremaineApproach ....................... 91 A.2 Ward’sApproach ............................... 92 References 93

    Adachi, I., Hayashi, C., Nakazawa, K. 1976, Progress of Theoretical Physics, 56, 1756 ALMA Partnership, Brogan, C. L., Pérez, L. M., et al. 2015, ApJ, 808, 3
    Andrews, S. M., Wilner, D. J., Hughes, A. M., Dullemond, C. P. 2010, ApJ, 723, 1241 Ayliffe, B. A., Laibe, G., Price, D. J., Bate, M. R. 2012, MNRAS, 423, 1450
    Bae, J., & Zhu, Z. 2018, ApJ, 859, 118
    Baruteau, C., & Papaloizou, J. C. B. 2013, ApJ, 778, 7
    Batygin, K., & Morbidelli, A. 2013, AJ, 145, 1
    Benítez-Llambay, P., Krapp, L., Pessah, M. E. 2019, ApJS, 241, 25
    Benítez-Llambay, P., & Masset, F. S. 2016, ApJS, 223, 11
    Binney, J., & Tremaine, S. 2008, in Galactic Dynamics, ed. J. Binney & S. Tremaine (Princeton: Princeton University Press), 96
    Bryden, G., Chen, X., Lin, D. N. C., Nelson, R. P., Papaloizou, J. C. B. 1999, ApJ, 514, 344 Chanut, T. G. G., Winter, O. C., Tsuchida, M. 2013, A&A, 552, A66
    Crida, A., Morbidelli, A., Masset, F. 2006, Icarus, 181, 587
    de Val-Borro, M., Edgar, R. G., Artymowicz, P., et al. 2006, MNRAS, 370, 529
    Duncan, M., Quinn, T., Tremaine, S. 1989, Icarus, 82, 402
    Fontana, A., & Marzari, F. 2016, A&A, 589, A133
    Fouchet, L., Maddison, S. T., Gonzalez, J.-F., Muray, J. R. 2007, A&A, 474, 1037
    Fujita, T., Ohtsuki, K., Tanigawa, T., Suetsugu, R. 2013, AJ, 146, 140
    Goldreich, P., & Tremaine, S. 1979, ApJ, 233, 857
    Greenberg, R. 1978, Icarus, 33, 62
    Guillot, T., Ida, S., Ormel, C. W. 2014, A&A, 572, 72
    Haffert, S. Y., Bohn, A. J., de Boer, J., et al. 2019, Nature Astronomy, https://doi.org/10.1038/s41550-019-0780-5
    Hayashi, C. 1981, Progress of Theoretical Physics Supplement, 70, 35 Hsieh, H.-F., & Jiang, I.-G. 2019, ApJ, 877, 34
    Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90 Inaba, S., Tanaka, H., Nakazawa, K., et al. 2001, Icarus, 149, 235 Johansen, A., & Klahr, H. 2005, ApJ, 634, 1353
    Jones, E., Oliphant, T., Peterson, P., et al. 2001, http://www.scipy.org/ Kary, D. M., Lissauer, J. J., Greenzweig, Y. 1993, Icarus, 106, 288 Keppler, M., Benisty, M., Müller, A., et al. 2018, A&A, 617, 44 Keppler, M., Teague, R., Bae, J., et al. 2019, A&A, 625, 118
    Kley, W., & Dirksen, G. 2006, A&A, 447, 369
    Kobayashi, H. 2015, Earth, Planets and Space, 67, 60
    Kratter, K., & Lodato, G. 2016, ARA&A, 54, 271
    Lambrechts, M., & Johansen, A. 2012, A&A, 544, A32
    Lee, W.-K. 2016, ApJ, 832, 166.
    Lee, W.-K., Dempsey, A. M., Lithwick, Y. 2019, ApJ, 872, 184
    Lin, D. N. C., & Papaloizou, J. C. B. 1993, in Protostars and Planets III, ed. E. H. Levy & J. I. Lunine (Tucson, AZ: University Arizona Press), 749
    Lithwick, Y., & Wu, Y. 2012, ApJ, 756, L11
    Malhotra, R. 1993, Icarus, 106, 264
    Marzari, F. 2018, A&A, 611, 37
    Marzari, F., Scholl, H., Tomasella, L., Vanzani, V. 1997, Planetary and Space Science, 45, 337
    Masset, F. 2000, A&AS, 141, 165
    Meurer, A., Smith, C. P., Paprocki, M., et al. 2017, PeerJ Computer Science, 3, 103
    Miranda, R., & Rafikov, R. R. 2019, ApJ, 875, 37
    Morbidelli, A., & Nesvorny, D. 2012, A&A, 546, A18
    Müller, A., Keppler, M., Henning, Th., et al. 2018, A&A, 617, 2
    Murray, C. D., & Dermott, S. F. 1999, in Solar System Dynamics, ed. C. D. Murray & S. F. Dermott (Cambridge: Cambridge University Press)
    Ormel, C. W., & Klahr, H. H. 2010, A&A, 520, A43 Paardekooper, S.-J., & Mellema, G. 2006, A&A, 453, 1129 Paardekooper, S.-J. 2007, A&A, 462, 355
    Paardekooper, S.-J., Baruteau, C., Crida, A., Kley, W. 2010, MNRAS, 401, 1950 Paardekooper, S.-J., Baruteau, C., Kley, W. 2011, MNRAS, 410, 293
    Papaloizou, J. C. B. 2011, Celestial Mechanics and Dynamical Astronomy, 111, 83 Papaloizou, J. C. B., & Terquem, C. 2010, MNRAS, 405, 573
    Patterson, C. W. 1987, Icarus, 70, 319
    Peale, S. J. 1976, ARA&A, 14, 215
    Pérez, F., & Granger, B. E. 2007, Computing in Science & Engineering, 9, 21
    Probstein, R. F., & Fassio, F. 1970, AIAA Journal, 8, 772
    Rein, H., & Liu, S.-F., 2012, A&A, 537, 128
    Rein, H., & Spiegel, D. S., 2015, MNRAS, 446, 1424
    Rice, W. K. M., Armitage, P. J., Wood, K., et al. 2006, MNRAS, 373, 1619
    Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
    Supulver, K., & Lin, D. N. C. 2000, Icarus, 146, 525
    Takeuchi, T., & Lin, D. N. C. 2002, ApJ, 581, 1344
    Tamayo, D., Triaud, A. H. M. J., Menou, K., Rein, H. 2015, ApJ, 805, 100
    Tang, Y.-W., Guilloteau, S., Dutrey, A., et al. 2017, ApJ, 840, 32
    Teyssandier, J., & Ogilvie, G. I. 2016, MNRAS, 458, 3221
    van der Walt, S., Colbert, S. C., Varoquaux, G. 2011, Computing in Science & Engineering, 13, 22
    Ward, W. R. 1981, Icarus, 47, 234
    Weidenschilling, S. J. 1977, MNRAS, 180, 57
    Weidenschilling, S. J., & Davis, D. R. 1985, Icarus, 62, 16
    Whipple, F. L. 1972, in From Plasma to Planet, ed. A. Evlius (New York: Wiley), 211 Winter, O. C., & Murray, C. D. 1997, A&A, 328, 399
    Wisdom, J. 1980, AJ, 85, 1122
    Yang, C. C., & Johansen, A. 2016, ApJS, 224, 39
    Zhu, Z., Nelson, R. P., Dong, R., et al. 2012, ApJ, 755, 6

    QR CODE