簡易檢索 / 詳目顯示

研究生: 張書豪
Shu-Huo Chang
論文名稱: 人臉之偵測與線上辨識系統之設計與實作
On the design and implementation of facial recognition
指導教授: 陳建祥
Jian-Shiang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 66
中文關鍵詞: 人臉偵測人臉辨識色彩分割歐式距離線性鑑別分析
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,發展出一套包含人臉偵測、人臉特徵點定位與人臉辨識的實驗室成員辨識系統。人臉偵測,是利用膚色範圍找出可能的人臉區域,達到人臉初步定位的目的。另外,對於人臉影像,特徵點的擷取很容易受到光線、角度等外在因素影響,因此運用可靠的人臉特徵定位演算法,精確地將人臉五官特徵點定位。
    接著,我們更進一步將這些特徵點轉為特徵向量以進行比對,即是利用各特徵向量間的相對關係,如距離、面積等,運用歐式距離演算法,將未知人臉影像與資料庫中資料比對,得到辨識結果。接著,我們修正歐式距離之算式,可以獲得更高的辨識率。另外,我們也使用線性鑑別分析法進行資料分類,最後,結合修正歐式距離之算式與線性鑑別分析法,針對特定團體成員進行辨識,可以獲得高於90%的辨識率。


    A facial recognition system for designated members which including based on detection, facial feature points location and facial recognition were developed. Robust feature location algorithms were adapted to discreminate facial features location precisely, the feature points were the transformed into feature vectors and then compared with database. In other words, to correlate each feature vector, e.g. distance, area… etc, comparison of the data of unknown facial image with database using Euclidean distance algorithm was adopted, and recognition results can be obtained. To achieve a higher recognition rate, modified Euclidean distance was proposed and implemented. Furthermore, Linear Discriminant Analysis Method was adopted to classify the data more accurately. Finally, we combined the modified Euclidean distance and Linear Discriminant Analysis method in the recognition process. A better than 90% recognition rate for specific group of people can be achieved through experiments.

    中文摘要................................................I Abstract...............................................II 目錄..................................................III 圖目錄.................................................VI 表目錄...............................................VIII 第一章 緒論............................................1 1-1 研究動機...........................................1 1-2 文獻回顧...........................................2 1-3 論文架構...........................................4 第二章 人臉偵測與辨識..................................6 2-1 人臉偵測........................................6 2-2 色彩空間與顏色分割..............................6 2-3 人臉辨識.......................................10 2-4 影像前置處理...................................12 2-4-1 影像大小正規化..............................12 2-4-2 灰階正規化..................................13 2-5 人臉特徵影像處理...............................14 2-5-1 眼球特徵估測...............................14 2-5-2 二值化影像.................................17 2-5-3 Sobel邊緣偵測影像..........................18 2-5-4 投影直方圖.................................19 2-6 人臉特徵比對...................................20 2-6-1 特徵向量...................................20 2-6-2 歐氏距離...................................20 2-6-3 線性鑑別分析...............................21 2-7 軟體環境.......................................23 2-8 結語...........................................23 第三章 實驗系統架構與人臉特徵定位.....................24 3-1 實驗系統架構...................................24 3-2 系統流程.......................................25 3-3 人臉膚色偵測...................................26 3-3-1 正規化RGB..................................26 3-3-2 雜訊去除...................................28 3-3-3 相鄰元素標定...............................30 3-4 人臉特徵定位...................................32 3-4-1 影像正規化與光線補償.......................33 3-4-2 眼球特徵估測...............................34 3-4-3 眼角與眼球特徵定位.........................36 3-4-4 眉心特徵定位...............................40 3-4-5 嘴角特徵定位...............................41 3-4-6 鼻孔特徵定位...............................42 3-5 人臉特徵定位結果...............................44 3-6 結論...........................................44 第四章 人臉辨識結果與討論.............................45 4-1 特徵向量選取...................................45 4-2 人臉辨識結果...................................50 4-2-1 歐式距離比對...............................50 4-2-2 線性鑑別分析資料分類.......................53 4-2-3 結合修正歐式距離與與線性鑑別分析之辨識法...54 4-3 實驗結果討論...................................56 第五章 本文貢獻與結論.................................59 5-1 本文貢獻.......................................59 5-2 結論與未來研究之方向與建議.....................60 5-2-1 結論.......................................60 5-2-2 未來研究方向與建議.........................61 參考文獻...............................................62

    [1] R. Chellappa, C. L. Wilson and S. Sirohey, "Human and Machine Recognition of Faces, A Survey," Proc. of the IEEE, Vol. 83, No. 5, pp.705-740, 1995.
    [2] M. Yang, D. J. Kriegman, and N. Ahuja, "Detecting Face in Images: A Survey," IEEE Trans. on PAMI, Vol. 24, No. 1, pp. 34-58, Jan. 2002.
    [3] A. Jain, R. Duin, and J. Mao, "Statistic pattern recognition: a review," Pattern Analysis and Machine Intelligence, IEEE Trans. on, Vol.22, Issue: 1, pp. 4-37, 2000.
    [4] Zhujie and Y. L. Yu, "Face Recognition with Eigenfaces," Proc. IEEE Conf. on Industrial Technology, pp. 434-438, 1994.
    [5] M. Turk and A. Pentland, "Eigenfaces for Recognition," Journal of Cognitive Neuroscience, Vol. 3, pp. 72-86, 1991.
    [6] A. M. Martinez and A. C. Kak, "PCA versus LDA," Pattern Analysis and Machine Intelligence, IEEE Trans. on, Vol.23, Issue:2, pp. 228-233, 2001.
    [7] W. Zhao, A. Krishnaswamy, R. Chellappa, D. Swets, and J. Weng, "Discriminant Analysis of Principle Components for Face Recognition," 3rd International Conf. on Automatic Face and Gesture Recognition, pp. 336-341, 1998.
    [8] C. Liu, and H. Wechsler, "Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition," IEEE Trans. on Image Proc., Vol. 11, No. 4, pp. 467-476, April, 2002.
    [9] W. S. Lee, H. J. Lee and J. H. Chung, "Wavelet-based FLD for face Recognition," Circuits and Systems, 2000 Proc. of the 43rd IEEE Midwest Symposium on, Vol. 2, pp. 734-737, 2000.
    [10] B. Moghaddam, W. Wahid and A. Pentland, "Beyond eigenfaces: probabilistic matching for face recognition," Automatic Face and Gesture Recognition, 1998 Proc. 3rd IEEE International Conf. on, pp. 30-35, 1998.
    [11] B. Moghaddam, C. Nastar, and A. Pentland, "Bayesian Face Recognition with Deformable Image Models," Proc. of Image Analysis and Processing, pp. 26-35, 2001.
    [12] B. Moghaddam, "Principal Manifolds and Probabilistic Subspaces for Visual Recognition," IEEE Trans. on PAMI, Vol. 24, No. 6, pp. 780-788, June 2002.
    [13] A. S. Tolba and A. N. Abu-Rezq, "Combined classifiers for invariant face recognition," IEEE International Conf. on, pp. 350-359, 1999.
    [14] R. L. Hsu, "Face detection in color images," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.24, pp.696-706, 2002.
    [15] L. Jordao, M. Perrone, J. P. Costeira, and J. Santos-Victor, "Active face and feature tracking," Proc. of International Conf. on Image Analysis and Processing, pp. 572-576, 1999.
    [16] S. Birchfield, "An elliptical head tracker," Conference Record of the 31st Asilomar Conf. on Signals, Systems & Computers, Vol. 2, pp. 1710-1714, 1997.
    [17] S. Birchfield, "Elliptical head tracking using intensity gradients and color histograms," Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, pp. 232-237, 1998.
    [18] C. C. Han, H. Y. Liao, G. J. Yu, and L. H. Chen, "Fast face detection via morphology-based pre-processing," Pattern Recognition, Vol.33, pp. 1707-1712, 2000.
    [19] R. Cendrillon and B. Lovell, "Real-time face recognition using Eigenfaces," Proc. of the SPIE International Conf. on Visual Communications and Image Processing, Perth, Australia, June 2000.
    [20] M. J. Er, S. Wu, J. Lu, and H. Lye, "Face Recognition with Radial Basis Function (RBF) Neural Networks," IEEE Trans. on Neural Networks, Vol.13, No.3, pp. 697-710, 2002.
    [21] E. Hjelm and B. K. Low, "Face Detection: A Survey," Computer Vision and Image Understanding, Vol.83, No.3, pp. 236-274, 2001.
    [22] J. Yang, W. Lu and A. Waibel, "Skin-Color Modeling and Adaptation," Proc. of ACCV'98 , Vol. 2, pp. 687-694, Hong Kong, 1998.
    [23] R. Stiefelhagen, J. Yang and A. Waibel, "Tracking Eyes and Monitoring Eye Gaze," International Journal of Distance Education Technologies, Vol. 3, No.3, pp. 34-47, 2005.
    [24] A. W. Senior, "Recognizing faces in broadcast video," Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, 1999 Proc. International Workshop on, pp. 105-110, 1999.
    [25] C. Kervrann, F. Davoine, P. Perez, R. Forchheimer and C. Labit, "Generalized likelihood ratio-based face detection and extraction of mouth features," Pattern Recognition Letters 18, pp. 899-912, 1997.
    [26] C. H. Lin and J. L. Wu, "Automatic facial feature extraction by genetic algorithms," Image Processing, IEEE Trans. on Vol.8, pp. 834-845, 1999.
    [27] YIQ, From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/YIQ
    [28] P. A. Beardsley, "A qualitative approach to classifying gaze direction," Automatic Face and Gesture Recognition, 1998. Proceedings. 3rd IEEE International Conf. on, pp. 160-165, 1998.
    [29] V. Bakic and G. Stockman, "Real-time tracking of face features and gaze direction determination," Applications of Computer Vision, 1998 Proc. 4th IEEE Workshop on, pp. 256-257, 1998.
    [30] B. Schiele and A. Wailbul, "Gaze Tracking Based on Face Color," IWAGFR’95 International Workshop on Face and Gesture Recognition, Zurich, 1995.
    [31] R. Brunelli and T. Poggio, "Face recognition: Features versus Templates," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.15, No.10, pp 1042-1052, 1993.
    [32] T. Kanade, Picture Processing by Computer Complex and
    Recognition of Human Faces, PhD thesis, Kyoto University, 1973.
    [33] A. V. Nefian and M. H. Hayes III, "Hidden Markov Models for Face Recognition," Proc. IEEE Int'l Conf. Acoustic, Speech and Signal Processing, pp. 2721-2724, 1998.
    [34] Y. Gao and M. K. H. Leung, "Face Recognition Using Line Edge Map," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.24, No.6, 2002.
    [35] Y. Li, J. Kittler and J. Matas, "Effective Implementation of Linear Discriminant Analysis for Face Recognition and Verification," 8th International Conf. on Computer Analysis and Patterns, Ljubljana, Slovenia, September 1-3 1999, Berlin, Germany, September 1999.
    [36] M. A. Turk and P. Pentland, "Face Recognition Using Eigenfaces," Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586-591, 1991.
    [37] P. Belhumeur, J. Hespanha and D. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection," IEEE Transactions, Pattern Analysis and Machine Intelligence, Vol.19, no. 7, pp. 711-720. 1997.
    [38] T. Heseltine, N. Pears and J. Austin, "Evaluation of image pre-processing techniques for eigenface based face recognition," Proc. 2nd Int. Conf. on Image and Graphics, SPIE Vol. 4875, pp. 677-685, 2002.
    [39] 陳嘉雄, Two-Stage Recognition of Multi-orientation Faces, 國立東華大學資訊工程學系碩士班論文, pp. 13-14 , 2002.
    [40] 施柏樑, Feature-Vector Based Face Recognition System for Mobile Photos, 國立中正大學電機工程學系碩士班論文, 2004.
    [41] Q. Yuan, W. Gao, H. Yao, "Robust Frontal Face Detection in Complex Environment,”, 16th International Conference on Pattern Recognition, vol. 1, pp. 11-15, 2002.
    [42] 繆紹綱, 數位影像處理活用-Matlab, 全華科技圖書, 1999.
    [43] 黃瑞松, Constructing 3D Facial Models for Next Generation Video Coding, 國立中正大學電機工程學系碩士班論文, pp. 42-43, 1998.
    [44] C. Liu and H. Wechsler, "Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition," IEEE Trans. on Image Processing, Vol. 11, pp. 467-476, April 2002.
    [45] R. A. Fisher, "The use of multiple measurements in taxonomic problems," Annual Eugenics, Vol. 7, part II, pp 179-188, 1936.
    [46] M. Soriano, S. Huovinen, B. Martinkauppi, and M. Laaksonen, "Using the Skin Locus to Cope with Changing Illumination Conditions in Color-Based Face Tracking," Proc. of IEEE Nordic Signal Processing Symposium, pp. 383-386, 2000.
    [47] C. Gonzales and E. Woods, Digital Image Processing 2nd Edition, Prentice-Hall, Inc. New Jersey, 2002.
    [48] K. Wu, E. Otoo and A. Shoshani, "Optimizing Connected Component Labeling Algorithms," Proc. of the SPIE, Vol. 5747, pp. 1965-1976, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE