研究生: |
劉達人 Darjen Liu |
---|---|
論文名稱: |
鋰電池極板製作之分析:混漿與塗佈 A Study on Making the Lithium-ion Battery Electrodes: Mixing and Coating |
指導教授: |
汪上曉
Wong, David Shan-Hill |
口試委員: |
萬其超
蔡德豪 溫恕恒 劉大佼 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 鋰電池 、漿料混合 、塗佈 、乾燥 、雙層塗佈 |
外文關鍵詞: | lithium ion battery, mixing, coating, drying, two-layered coating |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子二次電池為常見的能源儲存裝置,其電極板製造程序主要包含:(1)漿料混合和(2)塗佈乾燥製程,可直接影響電池特性的好壞。本論文分別研究此二程序,提出相較傳統方法,更先進且效率更佳之加工之方式。
鋰電池正、負極漿料配方中均含有大量的固體顆粒分散在含有機溶劑及黏結劑的高分子溶液系統之中,其粒子種類、大小、形狀各異,且漿料具較高黏度。本研究確認攪拌流場設計建立新穎的攪拌機和混漿程序以達到最佳的混合時間和效果。在比較數種不同的攪拌方式與混漿程序後,本研究發現,負極漿料以傳統的攪拌葉片即可達到和球磨攪拌機相同的分散效果,同時可以大幅節省混漿時間。正極漿料可以三維攪拌機和多步驟加料程序達到分散良好之目的。混漿分散效果可以量測漿料流變和流場觀察技術判定,並可進一步製作成極板組成電池比較其電池性能,再次確認以此方法和傳統攪拌方法比較可得到較好的電容量與循環壽命。
現有研究發現在製作極板時,因為鋰離子電池正負電極中含有相當比例的顆粒及黏著劑,在電極塗膜乾燥過程中,高溫乾燥條件有利於產品之生產速度,但會造成所謂黏結劑遷移現象,即電極塗層中粒子下沉而黏結劑上升,此種粒子顆粒與黏結劑分佈不均勻,會造成電極電性之不佳及塗層與基材黏著力下降。本研究利用一同時雙層塗佈之機制,將原本電極塗層一分為二,塗層中成份總重量,各成份比例不變,但在塗佈層結構中上層具較少黏著劑而下層具較多黏著劑,在快速乾燥中,因對流作用關係,反而使塗層內部黏著劑及顆粒之分佈達到均勻之效果,可以有效解決高溫乾燥時之黏結劑遷移缺陷,此效果以元素分佈和極板電導率量測得到證實,最後組成電池測試,亦發現可以改善其電容量、C-rate放電電容量與循環壽命。
Lithium ion secondary batteries as energy storage devices have become popular in recent years. Electrodes manufacturing process which involves mixing the slurry, coating and drying directly affect the quality of the battery performance. The thesis is divided into two parts respectively discuss ways to improve this second program compared to traditional methods.
Slurries for anodes and cathodes of lithium batteries contain a large percentage of solid particles of different chemicals, sizes and shapes in highly viscous media. A thorough mixing of these slurries poses a major challenge in the battery manufacturing process. Several types of mixing devices and mixing methods were examined. The conventional turbine stirrers or ball mill mixers could be adequately used for the preparation of anode slurries, but not suitable for cathode slurries. In this study, a newly three-dimensional mixer, in conjunction with a multi-stage mixing sequence were proposed. The mixing effectiveness was examined by means of rheological measurements and flow visualization techniques. Electrical performance results indicated that the battery obtained using the 3-D mixing device with a multi-stage mixing sequence was more efficient to those obtained from conventional methods.
The cathode and anode electrodes in lithium-ion batteries typically contain a significant proportion of particles and binders. During the electrode drying process, the high temperature will lead to the so-called "binder migration" phenomenon. Uneven particle/binder distribution can cause poor adhesion between the coated layer and which will level to the substrate, disruption of conductive paths and decrease the electrode performance. In this study, a two-layered cathode was designed using separate compositions of slurry ingredients in each layer, as produced by means of a simultaneous multilayer coating method. The two-layered cathode with the top layer containing less binder than the bottom layer was found to yield a better particle/binder distribution in the final structure under high temperature drying. The battery made with the two-layered cathode appeared to give a better overall performance.
1. http://3g.autooo.net/utf8-classid109-id143155.html
2. http://www.autochongqing.com/news/4872.html
3.http://www.stockfeel.com.tw/%E9%8B%B0%E9%9B%BB%E6%B1%A0-%E5%BA%B7%E6%99%AE4739/
4.http://www.moneydj.com/KMDJ/wiki/wikiViewer.aspx?keyid=91bb46c4-3bde-4084-a4c0-b844550e1403
5.http://www.alibaba.com/product-detail/12v-battery-1000ah-solar-batteries-1000ah_1748880021.html
6.http://www.moneydj.com/KMDJ/wiki/wikiViewer.aspx?keyid=8833fcf9-22ed-47f4-bfaf-e7b75a45e4f8
7.http://w3.siemens.com/markets/global/en/battery-manufacturing/applications/electrode-coating/pages/default.aspx
8. Li J, Daniel C, Wood D (2011) Materials processing for lithium-ion batteries, J Power Sources 196:2452-2460.
9. Zheng H, Tan L, Liu G, Song XG, Battaglia VS (2012) Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 Cathode, J Power Sources 208:52-57.
10. Yoo M, Frank CW, Mori S (2003) Interaction of poly(vinylidene fluoride) with graphite particles. 1. surface morphology of a composite film and its relation to processing parameters, Chem Mater 15:4:850-861.
11. Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries science and technologies, Springer, New York, 183-185.
12. Cheon SE, Kwon CW, Kim DB, Hong SJ, Kim HT, Kim SW (2000) Effect of binary conductive agents in LiCoO2 cathode on performance of lithium ion polymer battery, Electrochim Acta 46:4:599-605.
13. Ligneel E, Lestriez B, Guyomard D (2007) Relationships between processing, morphology and discharge capacity of the composite electrode, J Power Sources 174:716-719.
14. Ligneel E, Lestriez B, Hudhomme A, Guyomard D (2007) Effects of the solvent concentration (solid loading) on the processing and properties of the composite electrode, J Electrochem Soc 154:3:A235-A241.
15. Ponrouch A, Palacin MR (2011) On the impact of the slurry mixing procedure in the electrochemical performance of composite electrodes for Li-ion batteries: A case study for mesocarbon microbeads (MCMB) graphite and Co3O4, J Power Sources 196:9682-9688.
16. Tanguy PA, Thibault F, Dubois C, Aitkadi A (1999) Mixing hydrodynamics in a double planetary mixer, Trans IChemE 77:A:318-324.
17. Zhou G, Tanguy PA, Dubois C (2000) Power consumption in a double planetary mixer with non-Newtonian and viscoelastic materials, Trans IChemE 78:A:445-453.
18. Morishima H (2008) U.S. Patent, US 20080102196 A1.
19. Yang CY, Cheng CH, Jo SM, Chen JC, Hung WM (1997) Performance study of the LiCoO2/graphite system, J Power Sources 68:440-442.
20. Kim KM, Jeon WS, Chun IJ, Chang SH (1999) Effect of mixing sequences on the electrode characteristics of lithium-ion rechargeable batteries, J Power Sources 83:108-113.
21. Lee GW, Ryu JH, Han WJ, Ahn KH, Oh SM (2010) Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode, J Power Sources 195:6049-6054.
22. Li C, Lin Y (2012) Interaction between organic additives and active powders in water-based lithium iron phosphate electrode slurries, J Power Sources 220:413-421.
23. Zhang WJ, He X, Pu W, Li J, Wan C (2011) Effect of slurry preparation and dispersion on electrochemical performances of LiFePO4 composite electrode, Ionics 17:473-477.
24. Bitsch B, Dittmann J, Schmitt M, Scharfer P, Schabel W, Willenbacher N(2014) A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties, J Power Sources 265: 81-90.
25. Woziwodzki S, Broniarz-Press L, Ochowiak M (2010) Transitional mixing of shear-thinning fluids in vessels with multiple impellers, Chem Eng Technol 33:1099-1106.
26. Hatakeyama N, Suzuki E, Okushi K, Miura R, Suzuki A, Miyamoto A, Miyuki T, Koyama A, Eda N, Nagai R, Ota A, (2014)The 55rd Battery Symposium, Kyoto, Japan 2A03.
27. Li C, Lin Y (2012) Interaction between organic additives and active powders in water-based lithium iron phosphate electrode slurries, J Power Sources 220:413-421.
28. Zhang WJ, He X, Pu W, Li J, Wan C (2011) Effect of slurry preparation and dispersion on electrochemical performances of LiFePO4 composite electrode, Ionics 17:473-477.
29. Despotopoulou M, Burchill MT (2002) Coatings for electrochemical applications, Prog Org Coat 45:119-126.
30. Usui H, Kishimoto K, Suzuki H (2001) Non-Newtonian viscosity of dense slurries prepared by spherical particles, Chem Eng Sci 56:2979-2989.
31. Cho KY, Kwon YI, Youn JR, Song YS (2013) Interaction analysis between binder and particles in multiphase slurries, Analyst 138:2044-2050.
32. Stickel JJ, Powell RL (2005) Fluid mechanics and rheology of dense suspensions, Annu Rev Fluid Mech 37:129-149.
33. Mustafa, Usui H, Ishizuki M, Shige I, Suzuki H (2003) Rheological characteristics of non-Spherical graphite suspensions, Korea-Australia Rheo J 15:1:19-25.
34. Li CC, Wang YW (2011) Binder distributions in water-based and organic-based LiCoO2 electrode sheets and their effects on cell performance, J Electrochem Soc 158:A1361-A1370.
35. Jeon BH, Yeon JH, Kim KM, Chung IJ (2002) Preparation and electrochemical properties of lithium-sulfur polymer batteries, J Power Sources 109:89-97.
36. Belliard F, Irvine JTS (2001) Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery, J Power Sources 97-98:219-222.
37. 楊長榮,江品季,林榮正,陳進興(2005) 鋰電池及板漿料流變結構分析研究, 工業材料227:112-117.
38. 陳耿楊,詹德照,陳進興,陳建安(2005) 流變分析在分散技術之應用─從鋰電池混漿出發, 工業材料 219:89-95.
39. Carreau, Pierre J (1997) Rheology of polymeric systems: principles and applications, Hanser/Gardner Publications, Cincinnati.
40. Kim KM, Jeon WS, Chun IJ, Chang SH (1999) Effect of mixing sequences on the electrode characteristics of lithium-ion rechargeable batteries, J Power Sources 83:108-113.
41. Lee GW, Ryu JH, Han WJ, Ahn KH, Oh SM (2010) Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode, J Power Sources 195:6049-6054.
42. Zheng H, Yang R, Liu G, Song XG, Battaglia VS (2012) Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode, J Phys Chem 116:C:4875-4822.
43. Clalus D, Jurgen O. Besecchard (2011) Handbook of battery materials, 2nd, Wiley-VCH.
44. Han L, Wang S, Xiao F (2013) The analysis and research on the coating and drying method of electrode of the li-ion power battery, Adv Mater Res 765-767:3184-3187.
45. Yoshio M, Brodd RJ, Kozawa A Eds.(2009) Lithium-ion batteries, Springer, NY, USA.
46. A.L. Beguin (1954) US 2681294.
47. K. J. Ruschak (1976) Chem Eng Sci 31:1057-1060.
48. Cohen ED, Gutoff EB, Eds.(1992) Modern coating and drying technology, VCH.
49. E. B. Gutoff, E. D. Cohen, G. I. Kheboian (2006) Coating and Drying Defects: Troubleshooting Operating Problems, Wiley.
50. Lee KY, Liu LD, Liu TJ (1992) Minimum wet thickness in extrusion slot coating, Chem Eng Sci 47:1703-1713.
51. Chu WB, Yang JW, Wang YC, Liu TJ, Tiu C, Guo J (2006) The effect of inorganic particles on slot die coating of Polyvinyl alcohol solutions, J colloid and Interface Sci 297:215-225.
52. Huang YC, Wang TZ, Tsai CP, Liu TJ (2012) Operation window of solution casting, Part I: Newtonian fluids, J Applied polymer Sci 129: 1:507-816.
53. Schmitt M, Baunach M, Wengeler L, Peters K, Junges P, Scharfer P, Schabel W (2012) Slot-die processing of lithium-ion battery electrodes-Coating window characterization, Chem Eng and Proce 68:32-37.
54. Wakamatsu H, Natsume T US 2013 0056092 A1.
55. Bhamidipati KL, Didari S, Harris T AL (2013) Slot die coating of polybenzimiazole based membranes at the air engulfment limit, J Power Sources 239:382-392.
56. A123 美國能源局計畫報告.
57. Yu WJ, Liu TJ, Yu TA (1995) Reduction of the minimum wet thickness in extrusion slot coating, Chem Eng Sci 50:917-920.
58. Schmitt M, Baunach M, Wengeler L, Peters K, Junges P, Scharfer P, Schabel W (2013) Slot-die processing of lithium-ion battery electrodes-Coating window characterization, Chem Eng Process 68:32-37.
59. Imachi N, Fujimoto H, Fujitani S US 0026312.
60. Imachi N, Takano Y, Fujimoto H, Kida Y, Fujitani S (2007) Layered cathode for improving safety of Li-ion batteries, J Electrochem Soc 154:5:A412-A416.
61. Chu WB, Liu DJ, Chen CC, Chen LC, Tseng ST, Wen SH, Yang CR US 2014/0162118A1.
62. Schmitt M, Raupp S, Wagner D, Scharfer P, Schabel W (2015) Analytical determination of process windows for bilayer slot die coating, J Coat Technol Res 12:5:877-887.
63. Liu DJ, Chen LC, Liu TJ, Fan T, Tsou EY, Tiu C (2014) An effective mixing for lithium ion battery slurries, Adv Chem Eng Sci 4:4:515-528.
64. Chen LC, Liu DJ, Liu TJ, Tiu C, Yang CR, Chu WB, Wan CC (2016) Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coating, J Energy Storage 5:156-162.
65. Lin YN, Huang SY, Liu TJ (2005) Minimum wet thickness for double-layer slide-slot coating of poly(vinyl-alcohol) solutions, Polym Eng Sci 45:12:1590-1599.
66.Wood DL, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries, J Power Sources 275:234-242.
67.Li J, Daniel C, Wood DL (2011) Materials processing for lithium-ion batteries, J Power Sources 196:5:2452-2460.
68.Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries, Nature 414:359-367.
69.Westphal BG, Bockholt H, Günther T, Haselrieder W, Kade A (2015). Influence of convective drying parameters on electrode performance and physical electrode properties, ECS Trans 64:22:57-68.
70.Baunach M, Jaiser S, Schmelzle S, Nirschl H, Scharfer P, Schabel W (2016) Delamination behavior of lithium-ion battery anodes: Influence of drying temperature during electrode processing, Drying Technol 34:4:462-473.
71.Motoi M, Ueda K, Watanabe A, Suda K, Terada T, Fujita K, Iwade T, WO2013/099569A1.
72.Hagiwara H, Suszynski WJ, Francis LF (2014) A Raman spectroscopic method to find binder distribution in electrodes during drying, J Coat Technol Res 11:1:11-17.
73.Li CC, Wang YW (2011) Binder distributions in water-based and organic-based LiCoO2 electrode sheets and their effects on cell performance, J Electrochem Soc 158:12:A1361-A1370.
74.Ligneel E, Lestriez B, Hudhomme A, Guyomard D (2007) Effects of the solvent concentration (solid loading) on the processing and properties of the composite electrode, J Electrochem Soc 154:3:A235-241.
75. Ligneel E, Lestriez B, Guyomard D (2007) Relationships between processing, morphology and discharge capacity of the composite electrode, J Power Sources 174:2:716-719.
76. Buss F, Roberts CC, Crawford KS, Peters K, Francis LF (2011) Effects of soluble polymer binder on particle distribution in a drying particulate coating, J Colloid Interface Sci 359:1:112-120.
77. Li CC, Wang YW (2013) Importance of binder composition to the dispersion and electrochemical properties of water-based LiCoO2 cathodes, J Power Sources 227:204-210.
78. Lim S, Ahn KH, Yamamura M (2013) Latex migration in battery slurries during drying, Langmuir 29:26:8233-8244.
79. Chang XW, Neo XQ, Shi C, Ho TM CN 102607240B.
80. Yamamura M (2009) Multiple crack nucleation in drying nanoparticle-polymer coatings, Colloids and surfaces A: physicochem Eng Aspects 342:65-69.
81. Yamamura M (2011) In-situ characterization of drying particulate coatings, KONA Powder and Part Jour 29:39-52.
82. Takase K, Miura H, Tamon H, Okazaki M (1994) Structure formation of coated films with dispersed pigments during drying, Drying Tech 12: 6:1279-1296.
83. Yoo M, Frank CW, Mori S (2003) Interaction of PVdF with graphite particles surface morphology of a composite film and its relation to processing parameters, Chem Mater 15: 850-861.
84. Li CC, Wang YW (2011) Binder distributions in water based and organic based LiCoO2 electrode sheets and their effects on cell performance, J Electrochem Soc 158:12:A1361-A1370.
85. Son B, Ryou M-H, Choi J, Lee T, Yu H K, Kim J H, Lee Y M , ACS Appl Mater Interfaces 6:526-531.
86. Nakao S, Ueno T, Shinpuku T, Kanda M, Ota A, Yoshino A, (2012)The 53rd Battery Symposium, Fukuoka, Japan 2A16.
87. Fukumitsu H, Ohmori M, Morooka K, Takahashi T, Shimada S, Suehiro S, (2012) The 53rd Battery Symposium, Fukuoka, Japan 3C05.
88. Sung NG, Ryu DH, Ku CH, Kim JJ, Shim HL US 0224584.
89. Uchida Y EP2424010A1.
90. Usui H (2003) Rheological characteristics of non-spherical graphite suspensions, Korea-Australia Rheo J 15:1:19-25.
91. Perry RH, Green DW (2007) Perry’s Chemical engineering’s hand book 7th Ed., McGraw-Hill, 1449-1451.
92. Ito H, Abe K, Ishida M, Nakano A, Maeda T, Munakata T, Nakajima H, Kitahara T (2014) Effect of through-plane distribution of polytetrafluorethylene in carbon paper on in-plane gas permeability, J Power Sources 248:822-830.
93. Risio SD, Yan N (2006) Characterizing coating layer z-directional binder distribution in paper using atomic face microscopy, Colloids Sur A Physicochem Eng Asp 289:1-3:65-74.
94. Lee GW, Ryu JH, Han W, Ahn KH, Oh WM (2010) Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode, J Power Sources 195:18:6049-6054.
95. Du Y, Zang YH, Du J (2011) Effects of starch on latex migration and on paper coating properties, Ind Eng Chem Res 50:16:9781-9786.
96. Li CC, Jean JH (2005) Effects of ethylene glycol, thickness, and B2O3 on PVA distribution in dried BaTiO3 green tape, Mater Chem Phys 94:1:78-86.
97. Zheng H, Tan L, Liu G, Song X, Battaglia VS (2012) Calendaring effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode, J Power Sources 208:52-57.
98. Haselrieder W, Ivanov S, Tran HY, Theil S, Frobose L, Westphal B, Mehrens MW, Kwade A (2014) Influence of formulation method and related processes on structural, electrochemical properties of LMS/NCA-blend electrodes, Prog Solid State Chem 44:4:157-174.
99. Babinec S, Tang H, Tailk A, Hughes S, Meyers G (2007) Composite cathode structure/property relationships, J Power Sources 174:2:508-514.
100. Liu G, Zheng H, Simens AS, Minor AM, Song X, Battaglia VS (2007) Optimization of acetylene black conductive additive and PVDF composition for high-power rechargeable lithium-ion cells, J Electrochem Soc 154:12:A1129-1134.
101. Hatakeyama N, Suzuki E, Okushi K, Mira R, Suzuki A, Miyamoto A (2014) Electrode structure change in coating and drying processes and its influence on discharge charge characteristics, 55th Battery Japan Conference.
102. Liu G, Zheng H, Song X, Battaglia VS (2012) Particles and polymer binder interaction: a controlling factor in lithium-ion electrode performance, J Electrochem Soc 159:3:A214-221.
103. Guy D, Lestriez B, Bouchet R, Gaudefroy V, Guyomard D (2005) Tailoring the binder of composite electrode for battery performance optimization, Electrochem Solid-State Lett 8:1:A17-A21.