研究生: |
林凱文 Lin, Kevin |
---|---|
論文名稱: |
智能化商標侵權判例之知識表示與前案推薦 Knowledge Representation and Intelligent Recommender System for Trademark Protection and Litigation Analysis |
指導教授: |
張瑞芬
Trappey, Amy |
口試委員: |
張力元
張艾喆 Trappey, Charles |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 商標保護 、侵權分析 、判例地圖 、侵權知識本體論 、文字探勘 、前案推薦 |
外文關鍵詞: | trademark protection, infringement analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來數位行銷蓬勃發展,且數位內容之涵蓋範圍具無限可能性與可塑性,亦隨著資訊的擴散不斷地快速變化。被揭露或被發現的商標侵權事件往往是所有侵權行為的冰山一角,實際構成侵權事實的事件往往正在發生、且未能被原商標擁有者所察覺而造成商業利益的損害。在數位行銷的領域中會造成侵權氾濫的主要原因在於,大部分的商標擁有者無法隨時監控所有的網路內容,也不具有判定對方是否構成侵犯商標權之事實的能力。有鑒於上述之情事,本研究欲提出智能化的商標保護與侵權分析與示範系統,確保商標擁有者在數位行銷領域中其權利不被他人侵犯。本研究將整合判例內容與商標法條建立各典型案件的判例地圖。又為了使系統具有判定各類案例的能力。系統的判定標準必須具有不斷更新各類判例的能力,故本研究整合各獨立的判例地圖,結合建構出一個宏觀的商標侵權知識本體地圖。
本研究將從侵權案例本體論之建構推廣至利用Python語言發展資料探勘與文字探勘之方法,自動化與快速的將以往的判例分類,使欲了解以往判例的商標擁有者可以快速且準確的透過文字探勘所得之特質了解各判例的特徵值與判例屬性,亦可透過這些文字探勘所得之資料快速的檢索欲了解的相關判例。除此之外,文字探勘所得之特徵值與關鍵屬性亦可作為判例推薦根據,透過商標擁有者的需求與面臨之情況推薦具適當關鍵屬性與特徵值之判例予之參考可快速且有效的落實保障智慧財產權之核心理念。
Digital marketing has flourished and digital content has covered the world with advertisements, slogans and trademarked products. As digital diffusion continues to propagate, trademark infringement is difficult to discover, document and prosecute. Companies are at a disadvantage since the financial damage of trademark infringement is enormous. Most trademark owners cannot continuously monitor all of the content on the web and do not have the ability to determine whether other competitors are in fact infringing the trademark. As a result, this research proposes an intelligent trademark protection and infringement analysis system to ensure that the trademark owner is protected in the field of digital marketing. This study integrates legal case content and trademark law to construct a macroscopic ontology of trademark infringement. The ontology is used to analyze the source data of potential infringement cases retrieved by the front-end digital marketing system, find similar or corresponding cases from the infringement case legal libraries, infer the possibility of infringement in the case, and make suggestions to the trademark owner. This study plans to construct the ontology of infringement cases and develop the system. The intelligent case-based recommendation system will use the Python programming language to implement deep AI learning algorithms to recommend similar prior litigation cases and to identify infringing digital content. The results form the basis to develop systems extendable to patent infringement defenses analysis systems which are more complicated in scope. This case law recommendation system will provide complete trademark protection and assist users to quickly explore similar, relevant cases, reduce search time, and improve infringement claim accuracy.
[1] Aleven, V. (2003). Using background knowledge in case-based legal reasoning: a computational model and an intelligent learning environment. Artificial Intelligence, 150(1-2), 183-237.
[2] Ba, S., & Pavlou, P. A. (2002). Evidence of the effect of trust building technology in electronic markets: Price premiums and buyer behavior. MIS quarterly, 243-268.
[3] Bagdanov, A. D., Ballan, L., Bertini, M., & Del Bimbo, A. (2007). Trademark matching and retrieval in sports video databases. In Proceedings of the international workshop on Workshop on multimedia information retrieval (pp. 79-86). ACM.
[4] Bench-Capon, T., & Sartor, G. (2003). A model of legal reasoning with cases incorporating theories and values. Artificial Intelligence, 150(1-2), 97-143.
[5] Branting, L. K. (2003). A reduction-graph model of precedent in legal analysis. Artificial Intelligence, 150(1), 59-95.
[6] Bucklin, R. E., & Sismeiro, C. (2009). Click here for Internet insight: Advances in clickstream data analysis in marketing. Journal of Interactive Marketing, 23(1), 35-48.
[7] Carpineto, C., & Romano, G. (2017). Learning to detect and measure fake ecommerce websites in search-engine results. In Proceedings of the International Conference on Web Intelligence (pp. 403-410). ACM.
[8] Chaffey, D., & Patron, M. (2012). From web analytics to digital marketing optimization: Increasing the commercial value of digital analytics. Journal of Direct, Data and Digital Marketing Practice, 14(1), 30-45.
[9] Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern discovery on the world wide web. In Tools with Artificial Intelligence, 1997. Proceedings., Ninth IEEE International Conference on (pp. 558-567). IEEE.
[10] Dellarocas, C. (2003). The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Management science, 49(10), 1407-1424.
[11] Etzioni, O. (1996). The World-Wide Web: quagmire or gold mine? Communications of the ACM, 39(11), 65-68.
[12] Fader, P. S., & Hardie, B. G. (2009). Probability models for customer-base analysis. Journal of interactive marketing, 23(1), 61-69.
[13] Feit, E. M., Wang, P., Bradlow, E. T., & Fader, P. S. (2013). Fusing aggregate and disaggregate data with an application to multiplatform media consumption. Journal of Marketing Research, 50(3), 348-364.
[14] FindLaw Corporate Information (2018). Retrieve from: https://company.findlaw.com/company-history/findlaw-corporate-information-press-company-background.html
[15] Goldfarb, A., & Tucker, C. E. (2011). Privacy regulation and online advertising. Management science, 57(1), 57-71.
[16] Grossman, R. L., & Siegel, K. P. (2014). Organizational models for big data and analytics. Journal of Organization Design, 3 (1), 20–25.
[17] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
[18] Heinonen, K., & Strandvik, T. (2002). Consumer responsiveness to marketing communication in digital channels. Frontiers of e-Business Research, 137-152.
[19] Howard, D. J., Kerin, R. A., & Gengler, C. (2000). The effects of brand name similarity on brand source confusion: Implications for trademark infringement. Journal of Public Policy & Marketing, 19(2), 250-264.
[20] Howison, J., Wiggins, A., & Crowston, K. (2011). Validity issues in the use of social network analysis with digital trace data. Journal of the Association for Information Systems, 12(12), 767.
[21] Jackson, P., Al-Kofahi, K., Tyrrell, A., & Vachher, A. (2003). Information extraction from case law and retrieval of prior cases. Artificial Intelligence, 150(1-2), 239-290.
[22] Järvinen, J., & Karjaluoto, H. (2015). The use of Web analytics for digital marketing performance measurement. Industrial Marketing Management, 50, 117-127.
[23] Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations Newsletter, 2(1), 1-15.
[24] Lau, J. H., & Baldwin, T. (2016). An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368.
[25] Law.com Legal Dictionary. (2018). Legal Dictionary. Retrieve from: http://dictionary.law.com/Default.aspx?selected=2063
[26] Leeflang, P. S., Verhoef, P. C., Dahlström, P., & Freundt, T. (2014). Challenges and solutions for marketing in a digital era. European management journal, 32(1), 1-12.
[27] McLaren, B. M. (2003). Extensionally defining principles and cases in ethics: An AI model. Artificial Intelligence, 150(1-2), 145-181.
[28] Miaoulis, G., & d'Amato, N. (1978). Consumer confusion & trademark infringement. The Journal of Marketing, 48-55.
[29] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
[30] Nelson Eng, R. (2008). A Likelihood of Infringement-The Purchase and Sale of Trademarks as Adwords. Alb. LJ Sci. & Tech., 18, 493.
[31] Nguyen, H. V., & Bai, L. (2010, November). Cosine similarity metric learning for face verification. In Asian Conference on Computer Vision (pp. 709-720). Springer Berlin Heidelberg.
[32] Nurseitov, N., Paulson, M., Reynolds, R., & Izurieta, C. (2009). Comparison of JSON and XML data interchange formats: a case study. Caine, 2009, 157-162.
[33] Olston, C., & Najork, M. (2010). Web Crawling. Foundations and Trends in Information Retrieval, 4(3), 175-246.
[34] Phippen, A., Sheppard, L., & Furnell, S. (2004). A practical evaluation of Web analytics. Internet Research, 14(4), 284-293.
[35] Pomirleanu, N., Schibrowsky, J. A., Peltier, J., & Nill, A. (2013). A review of internet marketing research over the past 20 years and future research direction. Journal of Research in Interactive Marketing, 7(3), 166-181.
[36] Ramos, J. (2003, December). Using tf-idf to determine word relevance in document queries. In Proceedings of the first instructional conference on machine learning (Vol. 242, pp. 133-142).
[37] Rissland, E. L., Ashley, K. D., & Loui, R. P. (2003). AI and Law: A fruitful synergy. Artificial Intelligence, 150(1-2), 1-15.
[38] Ronkainen, A. (2013). Intelligent trademark analysis: experiments in large-scale evaluation of real-world legal AI. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law (pp. 227-231). ACM.
[39] Ronkainen, A. (2015). AI analysis of trademark law: trademarknow NameCheck and NameWatch. In Proceedings of the 15th International Conference on Artificial Intelligence and Law (pp. 231-232). ACM.
[40] Rosso, M. A., & Jansen, B. J. (2010). Smart marketing or bait & switch: competitors' brands as keywords in online advertising. In Proceedings of the 4th workshop on Information credibility (pp. 27-34). ACM.
[41] Rutz, O. J., & Bucklin, R. E. (2011). From generic to branded: A model of spillover in paid search advertising. Journal of Marketing Research, 48(1), 87-102.
[42] Rutz, O. J., Trusov, M., & Bucklin, R. E. (2011). Modeling indirect effects of paid search advertising: which keywords lead to more future visits?. Marketing Science, 30(4), 646-665.
[43] Scott, C. D. (2013). Trademark strategy in the internet age: Customer hijacking and the doctrine of initial interest confusion. Journal of Retailing, 89(2), 176-189.
[44] Staab, S., & Studer, R. (Eds.). (2010). Handbook on ontologies. Springer Science & Business Media.
[45] Stone, M. D., & Woodcock, N. D. (2014). Interactive, direct and digital marketing: A future that depends on better use of business intelligence. Journal of Research in Interactive Marketing, 8(1), 4-17.
[46] Tan, A. H. (1999, April). Text mining: The state of the art and the challenges. In Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases (Vol. 8, pp. 65-70). sn.
[47] Tiago, M. T. P. M. B., & Veríssimo, J. M. C. (2014). Digital marketing and social media: Why bother?. Business Horizons, 57(6), 703-708.
[48] Trappey, C. V., Trappey, A. J., & Wang, Y. H. (2016). Are patent trade wars impeding innovation and development?. World Patent Information, 46, 64-72.
[49] Troxclair, L. (2005). Search Engines and Internet Advertisers: Just One Click Away from Trademark Infringement. Wash. & Lee L. Rev., 62, 1365.
[50] U. S. PATENT & TRADEMARK OFFICE (2017). U. S. TRADEMARK LAW.
[51] Verheij, B. (2003). Artificial argument assistants for defeasible argumentation. Artificial intelligence, 150(1-2), 291-324.
[52] WebProtégé Administrator's Guide (2017). Retrieve from: https://protegewiki.stanford.edu/wiki/WebProtegeAdminGuide
[53] Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121.
[54] Wind, J., & Mahajan, V. (2002). Digital marketing. Symphonya. Emerging Issues in Management, (1), 43-54.
[55] Yoon, B., & Park, Y. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. The Journal of High Technology Management Research, 15(1), 37-50.
[56] Zhang, P., Stalla-Bourdillon, S., & Gilbert, L. (2016). A content-linking-context model for notice-and-take-down procedures. In Proceedings of the 8th ACM Conference on Web Science (pp. 161-165). ACM.
[57] Zhang, W., Yoshida, T., & Tang, X. (2011). A comparative study of TF* IDF, LSI and multi-words for text classification. Expert Systems with Applications, 38(3), 2758-2765.
[58] 王敏銓 (2006)。 美國商標法之混淆之虞及其特殊態樣之研究。
[59] 曾憲雄、蔡秀滿、蘇東興、曾秋蓉與王慶堯 (2012)。資料探勘。台北市:旗標出版。
[60] 經濟部智慧財產局 (2017)。 「混淆誤認之虞」審查基準。