簡易檢索 / 詳目顯示

研究生: 鍾孟儒
Chung, Meng Ru
論文名稱: 以飛秒瞬態吸收光譜技術研究不同溶劑中苯胺-矽烷基-對-反式雙苯乙烯共聚單體之激發態動力學
Excited-State Dynamic of Dialkysilylene-Spaced Monomer with Femtosecond Transient Absorption Spectroscopy
指導教授: 陳益佳
Chen, I-Chia
口試委員: 鄭博元
Cheng, Po-Yuan
高雅婷
Kao, Ya-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 飛秒瞬態吸收光譜
外文關鍵詞: Femtosecond Transient Absorption
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主要以瞬態吸收光譜技術搭配單光子計數系統分別偵測激發態吸收及放光的方法,研究以矽烷基作為間隙物共聚物單體sti-si-ani之光引誘電子傳遞反應,由反式雙苯乙烯 (stilbene)和苯胺 (aniline)之間以矽烷基 (SiMe2) 做為橋樑組成,此共聚物單體擁有anti和syn兩種構型。以波長266 nm之飛秒雷射為激發光源,在非極性的溶劑中,瞬態吸收光譜譜線存在三個自然指數衰減,很快速的能量轉移過程τ_1^TA = 1-3 ps,及 苯胺的1ππ*及2ππ*的緩解過程τ_2^TA = 60-100 ps,及苯胺與低振動態的雙苯乙烯的生命期τ_3^TA =1-4 ns,而在低極性極高極性的溶劑中,則發現電子轉移態的出現,在低極性電子轉移態的譜帶,存在四個自然指數衰減及生成成分,分別第一個的電子轉移態anti構型極短的衰減生命期_1^(,TA) = 0.5 ps和生成的上升生命期_2^(r ,TA) = 2-8 ps,及第二個電子轉移態轉成syn構型生成的較長上升生命期_3^(r ,TA),還有一個最長的電子轉移態的衰減_4^TA = 10 ns,在高極性溶劑中,電子轉移的譜帶,也以四個自然指數擬合,分別第一個電子轉移態anti構型的生成為極短的衰減生命期_1^(,TA)= 0.2-0.6 ps和上升生命期_2^(r ,TA) = 0.8-2 ps,及第二個電子轉移態syn構型為較長的上升生命期_3^(r ,TA) =18-30 ps,還有一個長的anti電子轉移態的衰減_4^TA = 145-270 ps,但在高極性且黏度較大的溶劑中還會再觀察到_5^TA = 400~1500 ps,則為轉成syn構型的電子轉移態的衰減生命期,本論文研究結果顯示sti-si-ani受光激發後在極性環境中除了進行能量轉移反應,亦能進行相當有效率的電荷轉移,很適合應用於光引誘電子傳遞材料。


    We used time-correlated single photon counting and Femtosecond Transient Absorption to investigate two photoinduced electron transfer dialkylsilylene-spaced monomer . The aniline is the electron Donor , trans-stilbene is the electron Acceptor and SiMe2 as a spacer.This monomer has two conformer anti and syn. We excited DA with a 266 nm laser beam. In non-polar solvents, The observed lifetimes, arranged from short to long are assigned to, the energy transfer lifetime of trans-stilbene (τ_1^TA) is around 1-3 ps, aniline relaxation lifetime between 1ππ* and 2ππ* (τ_2^TA) is around 60-100 ps and the aniline and trans-stilbene fluorescence lifetime (τ_3^TA) are 1 ns and 4 ns. In slightly polar solvents, we detect the charge transfer state (CT state) absorption. The observed lifetimes, arranged from short to long are assigned to, the energy transfer and the first charge transfer state lifetime (τ_1^TA) is around 0.5 ps and a rise lifetime (_2^(r ,TA)) is around 2-8 ps , the second charge transfer state lifetime of anti to syn (τ_3^TA) and the charge transfer state decay lifetime (τ_4^TA) is 10 ns. In polar solvents, we detect four exponential decay. The observed lifetimes, arranged from short to long are assigned to, the lifetime of energy transfer and the formation of charge transfer state is ultrashort at_1^(,TA)= 0.2-0.6 ps and a rise lifetime _2^(r ,TA) = 0.8-2 ps, the second charge transfer state lifetime of anti to syn (τ_3^TA) is around 18-30 ps and the charge recombination lifetime (τ_4^TA) is around 145-270 ps. In polar and high viscosity solvents,we find syn charge transfer state decay lifetime (_5^(,TA)) around 400~1500 ps. The experimental results imply the efficient charge transfer of this monomer in polar environments. This dialkysilylene-spaced monomer is suitable for using in photoinduced electron transfer materials.

    謝志 i 摘要 iii ABSTRACT iv 目錄 v 圖列表 vii 表列表 x 第1章 文獻回顧 1 1.1 前言 1 1.2 電子轉移和能量轉移理論 2 1.3 反式雙苯乙烯(trans-stilbene)光化學反應 5 1.4 以甲矽烷基為間隙之電子傳遞系統 6 1.5 苯胺的光化學反應 10 1.6 研究目的 11 第2章 實驗器材 12 2.1 穩態(steady-state)紫外可見光吸收光譜與螢光分光光譜儀 12 2.2 時間相關單光子計數系統(Time Correlated Single Photon Counting) 12 2.2.1 原理 12 2.2.2 實驗架設 15 2.3 飛秒瞬態吸收光譜儀 16 2.3.1 超快雷射系統 16 2.3.1-2啾稠脈衝放大器 17 2.3.2 瞬態吸收光譜儀 19 2.3.2-1原理 ……………………………………………………………………….19 2.3.2-2光路架設 20 2.4 實驗條件 22 第3章 實驗結果與數據分析 24 3.1 前言 24 3.2 理論計算 24 3.3 實驗結果與數據分析 35 3.3.1 溶劑效應 35 3.3.2 穩態吸收光譜 36 3.3.3 螢光生命期偵測 41 3.3.4瞬態吸收光譜 50 3.3.4 -1 光譜及動力曲線分析 50 3.3.4-2 全光譜擬合及指認 51 第4章 衰減動態指認與討論 69 附錄………………………………………………………………………………….…74 參考文獻 77

    1. Martin Bopp, Plant Growth Substances 1985.
    2. Yi-Chung Dzeng, Chi-Ling Huang, Yi-Hung Liu, Tsong-Shin Lim, I-Chia Chen, and Tien-Yau Luh, Macromolecules 2015, 48, 8708−8717
    3. Kavarnos, G. J ,Springer 1990, 21-58.
    4. Marcus, R. A. Sutin, N, Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics. 1985, 811, 265-322.
    5. Ohta, K.; Closs, G. L.; Morokuma, K.; Green, N. J, J. Am. Chem. Soc. 1986, 108, 1319-1320.
    6. Andrew C. Benniston.; Anthony Harriman., Chem. Soc. Rev. 2006, 35, 169–179.
    7. Lewis, G. N.; Magel, T. T.; Lipkin, D., J. Am. Chem. Soc. 1940, 62, 2973-2980.
    8. Leitner, D. M.; Levine, B.; Quenneville, J.; Martínez, T. J.; Wolynes, P. G., J. Phys. Chem. A. 2003, 107, 10706-10716.
    9. Saltiel, J.; Megarity, E. D.; Kneipp, K. G., T., J. Am. Chem. Soc. 1966, 88, 2336-2338.
    10. Saltiel, J., J. Am. Chem. Soc. 1967, 89, 1036-1037.
    11. Liao, W. C.; Chen, W. H.; Chen, C. H.; Lim, T. S.; Luh, T. Y., Photoinduced Electron Transfer as a Probe for the Folding Behavior of Dimethylsilylene-Spaced Alternating Donor−Acceptor Oligomers and Polymers. Macromolecules. 2013, 46, 1305−1311
    12. Liu, K. L.; Lee, S. J.; Chen, I. C.; Hsu, C. P.; Chen, C. H.; Luh, T. Y., J. Phys. Chem. C. 2013, 117, 64−70.
    13. Miller, R. D.; Michl, J., Polysilane High Polymers. Chem. Rev. 1989, 89, 1359-1410.
    14. Luh, T.-Y.; Cheng, Y.-J., Chem. Commun. 2006, 4669-4678.
    15. Gareth M. Roberts, Craig A. Williams, Jamie D. Young, Susanne Ullrich, Martin J. Paterson, and Vasilios G. Stavros, J. Am. Chem. Soc., 2012, 134 (30), pp 12578–12589
    16. Fang, M.-C.; Watanabe, A.; Matsuda, M., Macromolecules 1996, 29, 6807-6813.
    17. Moreau, C.; Serein-Spirau, F.; Létard, J.-F.; Lapouyade, R.; Jonusauskas, G.; Rullière, C., J. Phys. Chem. B. 1998, 102, 1487-1497.
    18. Courtney, S. H.; Kim, S. K.; Canonica, S.; Fleming, G. R., Molecular and Chemical Physics. 1986, 82, 2065-2072.
    19. Abrash, S.; Repinec, S.; Hochstrasser, R., T J. Chem. Phys. 1990, 93, 1041-1053.
    20. Pienta, N.; Fox, M.; Chanon, M., Photoinduced Electron Transfer. Part C, Elsevier. 1988, 445.
    21. Wasielewski, M. R., Chem. Rev. 1992, 92, 435-461.
    22. Berlman, I., Handbook of Florescence Spectra of Aromatic Molecules. Elsevier, 2012.
    23. Kohler, G.; Getoff, N., Physical Chemistry in Condensed Phases 1980, 76, 1576-1584.
    24. Yu, Z.; Li, J.; O'Connor, D. B.; Wang; Barbara, P. F., J. Phys. Chem. B. 2003, 107, 5670-5674.
    25. Oosterbaan, W. D.; Koeberg, M.; Piris, J.; Havenith, R. W. A.; van Walree, C. A.; Wegewijs, B. R.; Jenneskens, L. W.; Verhoeven, J. W., J. Phys. Chem. A. 2001, 105, 5984-5989.
    26. Mataga, N.; Kaifu, Y.; Koizumi, M., Bulletin of The Chemical Society of Japan 1956, 29, 465-470.
    27. Jane K. Rice,; A. P. Baronavski., J. Chem. Phys. 1992, 96, 3359-3366.
    28. Wang, H. W.; Cheng, Y. J.; Chen, C. H.; Lim, T. S.; Fann, W.; Lin, C. L.; Luh, T. Y., Macromolecules .2007, 40, 2666-2671.
    29. Köhler, G., Journal of Photochemistry 1987, 38, 217-238.
    30. Waldeck, D . H., Chem. Rev. 1991, 91. 415-436.
    31. Leitner, D. M.; Levine, B.; Quenneville, J.; Martínez, T. J.; Wolynes, P. G., J. Phys. Chem. A. 2003, 107, 10706-10716.
    32. 林夢萱, 102學年度國立清華大學碩士論文
    33. 黃芝綾, 103學年度國立清華大學碩士論文
    34. Joris J. Snellenburg, Sergey P. Laptenok, Ralf Seger, Katharine M. Mullen, Journal of Statistical Software. 2012, Volume 49, Issue 3.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE