研究生: |
陳昱翔 Chen, Yu-Hsiang |
---|---|
論文名稱: |
鈀/鍺/鈦/鉑與砷化銦鎵的歐姆介面之最佳化及材料分析 Optimization and analysis of Pd/Ge/Ti/Pt ohmic contact on n-InxGa1-xAs (x=0, 0.2 and 0.53) |
指導教授: |
洪銘輝
Hong, Ming-Hwei 郭瑞年 Kwo, Ray-Nien |
口試委員: |
黃倉秀
郭治群 徐嘉鴻 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 歐姆介面 、砷化銦鎵 |
外文關鍵詞: | Ohmic contact, InGaAs |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砷化銦鎵半導體的高遷移率對於高速互補式金屬氧化物元建中是一極有潛力之通道材料,而在互補式金屬氧化物元件的製成當中,如何有效降低源 極以及汲極的接觸電阻是非常關鍵的一個議題《尤其是在小尺寸的元件當中《 接觸電阻對於元件效能的影響更為重大〈有鑑於此《鈀/鍺/鈦/鉑在砷化銦鎵半導體上的歐姆介面在這篇論文中《達成了對於接觸電組之最佳化以及對於歐姆 介面形成做了完整的材料分析〈
經由分子束磊晶技術《不同比例的砷化銦􏰀磊晶層被成長在絕緣的砷化銦鎵基版上〈在經過鈀/鍺/鈦/鉑金屬的沈積之後《試片分別經由不同溫度以及時 間的快速退火條件製成〈之後再經由傳送線理論計算出其接觸電阻對於不同退 火條件之關係〈
在找到了最佳化的金屬厚度以及退火條件之後《在砷化鎵上最低的接觸 電阻為 1.2×10-6 歐姆公分平方》在 0.2 比例的砷化銦鎵上則可降低至 5.4×10-7 歐 姆公分平方〈而在 0.53 比例的砷化銦鎵上《甚至能將接觸電阻達到至 1.0×10-7 歐姆公分平方〈另外《X 光繞射》電子穿透顯微鏡以及能量散射光譜儀都用來 分析在砷化銦􏰀上歐姆介面的形成機制〈這篇論文的結果展示了鈀/鍺/鈦 a/鉑金 屬能有效的在砷化銦鎵上形成歐姆介面《並且對於未來應用在金屬氧化物場效電晶體上《提供了降低接觸電阻之明確的方法〈
InxGa1-xAs semiconductors are now potential candidates for high-speed complementary metal oxide semiconductor (CMOS) devices due to their high electron mobility. One of the key issues of fabricating high performance CMOS is to lower the contact resistance, which is the dominant component in the highly scaled devices. In this work, Pd/Ge/Ti/Pt metal system had been fabricated on n-InxGa1-xAs (x=0, 0.2, 0.53) layers for achieving low contact resistivity with planar metal-semiconductor interface.
A solid-source GaAs-based III-V molecular beam epitaxial (MBE) was used to grow GaAs, In0.2Ga0.8As and In0.53Ga0.47As epilayers. The samples were rapid thermal annealed (RTA) at various temperatures from 300°C to 400°C for 10 to 90 seconds after the deposition of Pd/Ge/Ti/Pt metals. Transmission line method (TLM) was used to extract the specific contact resistivity (ρc) and sheet resistance (Rs).
With the optimized Ge thickness and RTA condition, the lowest ρc attained on n-GaAs and n-In0.2Ga0.8As are 1.2×10-6 ohm-cm2 and 5.4×10-7 ohm-cm2 respectively. For n-In0.53Ga0.47As, ρc could even reach as low as 1×10-7 ohm-cm2. Moreover, X-ray diffraction (XRD), transmission electron microscope (TEM) and energy-dispersive X- ray spectroscopy (EDS) have also been used to analyze the mechanism of forming ohmic contacts on n-InxGa1-xAs. The results have demonstrated that the Pd/Ge/Ti/Pt metal system could to be readily applied to MOSFETs for the ohmic contact on the re- grown source/drain or ion-implanted source/drain with appropriate activation temperature.
1. Schroder DK. Semiconductor material and device characterization. 2006.
2. Nittono T, Ito H, Nakajima O, Ishibashi T, Jpn J Appl Phys 1.27:1718-1722 (1988)
3. Braslau N, Gunn JB, Staples JL, Solid State Electron.10:381-383 (1967)
4. Procop M, Sandow B, Phys Status Solidi A.95:K211-K215 (1986)
5. Lakhani AA, Potter RC, Beyea DM, Semicond Sci Tech.3:605-607 (1988)
6. Alietti M, Canali C, Castaldini A, Cavallini A, Cetronio A, Chiossi C, D'Auria S, Del Papa C, Lanzieri C, Nava F, Nuclear Instruments and Methods in Physics Research Section A.362:344-348 (1995)
7. Kim T, Chung DDL, J Vac Sci Technol B.4:762-768 (1986)
8. Auvray P, Guivarch A, Lharidon H, Mercier JP, Henoc P, Thin Solid
Films.127:39-68 (1985)
9. Gyulai J, Mayer JW, Rodrigue.V, Yu AYC, Gopen HJ, J Appl Phys.42:3578-&
(1971)
10. Zee LY, Munir ZA, J Mater Sci.10:1929-1937 (1975)
11. Katz W, Smith G, Aina O, Baliga BJ, Rose K, Appl Surf Sci.9:122-130 (1981)
12. Jung T, Nebauer E, Phys Status Solidi A.77:K203-K206 (1983)
13. Langer DW, Ezis A, Rai AK, J Vac Sci Technol B.5:1030-1032 (1987)
14. Braslau N, Journal of Vacuum Science and Technology.19:803 (1981)
15. Sinha AKS, T.E.; Levinstein, H.J.; , Electron Devices. (1975)
16. E. D. Marshall CSW, C. S. Pai, D. M. Scott, and S. S. Lau, Materials Research Society, Pittsburgh 161 (1985)
17. Wang LC, Lau SS, Hsieh EK, Velebir JR, Appl Phys Lett.54:2677-2679 (1989)
18. Mead CA, J Electrochem Soc.115:C240-& (1968)
19. Ding J, Washburn J, Sands T, Keramidas VG, Appl Phys Lett.49:818-820 (1986) 80
20. M. A. Herman HS. Molecular beam epitaxy- fundamentals and current status. Springer-Verlag Berlin Heidelberg 1989.
21. Braun W, Moller H, Zhang YH, J Cryst Growth.202:50-55 (1999)
22. Ye PD, Yang B, Ng KK, Bude J, Wilk GD, Halder S, Hwang JCM, Appl Phys
Lett.86:- (2005)
23. Monch W, Rep Prog Phys.53:221 (1990)
24. Waldrop J, Appl Phys Lett. (1984)
25. Barnes PA, Cho, A. Y., , Appl Phys Lett. (1978)
26. Marshall E, Chen W, Wu C, Lau S, Kuech T, Appl Phys Lett.47:298 (1985)
27. Fischetti MV, Laux SE, Ieee T Electron Dev.38:650-660 (1991)
28. Marshall ED, Zhang B, Wang LC, Jiao PF, Chen WX, Sawada T, Lau SS, Kavanagh KL, Kuech TF, J Appl Phys.62:942-947 (1987)
29. Yu AYC, Solid State Electron.13:239-247 (1970)
30. Padovani FA, Stratton R, Solid State Electron.9:695-707 (1966)
31. Murrmann H, Widmann D, Ieee T Electron Dev.Ed16:1022-1024 (1969)
32. Berger HH, Solid State Electron.15:145-158 (1972)
33. Woelk E, KR□UTLE H, Beneking H, Ieee T Electron Dev.33:19-22 (1986)
34. Song Z, Shogen S, Kawasaki M, Suemune I, Appl Surf Sci.82-3:250-256 (1994)
35. Alperovich VL, Tereshchenko OE, Rudaya NS, Sheglov DV, Latyshev AV, Terekhov AS, Appl Surf Sci.235:249-259 (2004)
36. Liu H, Tsai S, Hsu J, Shih H, Materials Chemistry and Physics.61:117-123 (1999) 37. Barycka I, Zubel I, J Mater Sci.22:1299-1304 (1987)
38. Lida S, J Electrochem Soc.118:768-& (1971)
39. Kim I, Materials Letters. 57, 4033 (2003)
40. Hao PH, Wang LC, Deng F, Lau SS, Cheng JY, J Appl Phys.79:4211-4215 (1996) 41. Shen T, Gao G, Morkoc H, Journal of Vacuum Science & Technology B:
Microelectronics and Nanometer Structures.10:2113 (1992)
42. Jones K, Cole M, Han W, Eckart D, Hilton K, Crouch M, Hughes B, J Appl Phys.82:1723 (1997)
43. Kwak JS, Lee JL, Baik HK, Ieee Electr Device L.19:481-483 (1998)
44. Lim JW, Mun JK, Kwak MH, Lee JJ, Solid State Electron.43:1893-1900 (1999)
45. Lin H, Senanayake S, Cheng K, Hong M, Kwo J, Yang B, Mannaerts J, Ieee T Electron Dev.50(2003)
46. Mach□č P, Sajdl P, Machovič V, Journal of Materials Science: Materials .... (2007)
47. Chen W, Cowles J, Haddad G, Journal of Vacuum .... (1992)
48. Crook A, Lind E, Griffith Z, Rodwell... M, Applied Physics .... (2007)
49. Singisetti U, Wistey MA, Zimmerman JD, Thibeault BJ, Rodwell MJW, Gossard AC, Bank SR, Appl Phys Lett.93:183502 (2008)
50. Baraskar AK, Wistey MA, Jain V, Singisetti U, Burek G, Thibeault BJ, Lee YJ, Gossard AC, Rodwell MJW, J Vac Sci Technol B.27:2036-2039 (2009)
51. Fischetti MV, Laux SE, IEEE T Electron Dev.39:749-750 (1992)
52. Tsuchiya H, Maenaka A, Mori T, Azuma Y, IEEE Electr Device L.31:365-367
(2010)
53. Baraskar AB, A., Wistey MA, Jain V, Lobisser E, Singisetti U, Burek G, Lee YJ,
Thibeault B, Gossard A, Rodwell M, J Vac Sci Technol B.28:C5i7-C5i9 (2010)