簡易檢索 / 詳目顯示

研究生: 彭俊賢
Chun-Hsien Peng
論文名稱: 藉由峰度最大化的盲蔽信號源分離演算法與其在無線通訊之應用
Blind Source Separation Algorthms by Kurtosis Maximization with Applications to Wireless Communications
指導教授: 祁忠勇
Chong-Yung Chi
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 英文
論文頁數: 173
中文關鍵詞: 盲蔽信號源分離演算法峰度最大化多重輸入多重輸出渦輪信號源抽取演算法多階段連續消除非消除多階段演算法多載波-分碼多工接取系統多重速率直接序列/分碼多工接取系統正交分頻多工系統盲蔽多用戶檢測演算法盲蔽空-時解碼演算法盲蔽串聯空-時接收機盲蔽渦輪空-時接收機盲蔽波束成型演算法
外文關鍵詞: blind source separation, kurtosis maximization, multiple-input multiple-output (MIMO), turbo source extraction algorithm (TSEA), multistage successive cancellation (MSC), noncancellation multistage (NCMS) algorithms, multicarrier code-division multiple access (MC-CDMA) systems, multi-rate direct sequence/code division multiple access (DS/CDMA) systems, orthogonal frequency division multiplexing (OFDM) systems, blind multiuser detection algorithm (BMDA), blind space-time decoding (BSTD) algorithm, blind cascade space-time receiver (CSTR), blind turbo space-time receiver (TSTR), blind beamforming algorithm
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 給定一組瞬間多重輸入多重輸出(multiple-input multiple-output, MIMO)系統之有雜訊的輸出量測資料,峰度(四階統計量)最大化準則已被有效地使用於未知非高斯且有色輸入(colored inputs)(信號源)及MIMO系統之估計。從效能及運算複雜度之觀點,祁等人所提出的快速峰度最大化演算法(fast kurtosis maximization algorithm, FKMA)已經是一個有效的演算法,並且已被成功地應用於統計信號處理及無線通訊,例如:盲蔽信號源分離、盲蔽波束成型以及盲蔽多用戶檢測。然而,當系統輸入的峰度很小,FKMA的效能可能會嚴重地下降。FKMA於先進的無線通訊系統之應用仍然是開放的研究領域,例如:多載波-分碼多工接取(multicarrier code division multiple access, MC-CDMA)系統、多重速率直接序列/分碼多工接取(direct sequence/code division multiple access, DS/CDMA)系統以及多用戶正交分頻多工(orthogonal frequency division multiplexing, OFDM)系統。
    FKMA在第二章介紹之後,第三章提出一個嶄新的盲蔽信號源抽取演算法,稱為渦輪信號源抽取演算法(turbo source extraction algorithm, TSEA),此演算法利用信號的時間特性以增加正規化的峰度大小值,並且以循環之方式使用空間及時間處理,進而改善抽取效能。此外,提出兩個非消除多階段演算法,而這兩個演算法從階段到階段免於錯誤增殖之影響。
    第四章提出FKMA的應用於配備單一接收天線或多接收天線之準同步改良式MC-CDMA系統的盲蔽多用戶檢測。在第五章,針對空-時編碼MC-CDMA系統之下傳模式,提出一個使用FKMA的嶄新盲蔽空-時解碼演算法。接著,針對配備單一接收天線(或多接收天線)之非同步多重速率DS/CDMA系統(可改變的處理增益系統和多碼系統),兩個多重速率盲蔽多用戶檢測演算法於第六章提出,一個是基於迴積的MIMO信號模型,而另一個則是基於瞬時的MIMO信號模型。
    為了同通道干擾及符碼干擾之抑制,第七章提出兩個峰度最大化的盲蔽空-時接收機,一個是盲蔽串聯空-時接收機(cascade space-time receiver, CSTR)(是一個傳統的空-時架構),而另一個則是盲蔽渦輪空-時接收機(turbo space-time receiver, TSTR)(是一個循環耦合式的空-時架構)。在效能上,盲蔽TSTR明顯地勝過盲蔽CSTR,而TSTR基本上與第三章中的TSEA是相同的。
    第八章描述FKMA於OFDM系統之盲蔽波束成型的應用。在此章中,針對後置傅立葉轉換波束成型架構,基於子載波平均且藉由峰度最大化,我們提出一個全新、盲蔽且單一區塊的波束成型演算法。對於所有子載波而言,所設計的波束成型器皆相同並有效地利用多路徑分集以獲得效能增益,同時也對彼此具相關性的信號源的效能有強健的抵抗力。
    第三至第八章中的每一章,皆提供一些模擬結果以證實提出的演算法之功效以及與現存演算法效能的比較。最後,第九章做一些結論及提供一些未來值得進行的研究。


    The kurtosis maximization criterion has been effectively
    used for blind spatial extraction of one source from an
    instantaneous mixture of multiple non-Gaussian sources, such as the kurtosis maximization algorithm proposed by Ding and Nguyen, and the fast kurtosis maximization algorithm (FKMA) proposed by Chi et al. By empirical studies we found that the smaller the normalized kurtosis magnitude of the extracted source signal, the worst the performance of these algorithms. In this thesis, with the assumption that each source is a non-Gaussian linear process, a novel blind source extraction algorithm, called turbo source extraction algorithm (TSEA), is proposed. The ideas of the TSEA are to exploit signal temporal properties for increasing the normalized kurtosis magnitude, and to apply spatial and temporal processing in a cyclic fashion to improve the signal extraction performance. The proposed TSEA not only outperforms the FKMA, but also shares the convergence and computation advantages enjoyed by the latter.

    This thesis also considers the extraction of multiple sources, also known as source separation, by incorporating the proposed TSEA into the widely used multistage successive cancellation (MSC) procedure. A problem with the MSC procedure is its susceptibility to error propagation accumulated at each stage. Therefore, we propose two noncancellation multistage (NCMS) algorithms, referred
    to as NCMS-FKMA and NCMS-TSEA, that are free from the error
    propagation effects.

    In this thesis, the FKMA is further applied to blind multiuser detection and blind space-time decoding (BSTD) for multicarrier code-division multiple access (MC-CDMA) systems. Assuming that all the users' spreading sequences are given \emph{a priori}, a blind multiuser detection algorithm (BMDA), which comprises FKMA and a user identification algorithm, for the uplink of a quasi-synchronous modified MC-CDMA system (with multiple receive
    antennas) and a BSTD algorithm, which comprises FKMA and blind maximum ratio combining (BMRC), for the down-link of a space-time coded MC-CDMA system (with multiple transmit and receive antennas used) are proposed.

    Moreover, the FKMA is applied to blind multiuser detection for asynchronous multi-rate direct sequence/code division multiple access (DS/CDMA) systems. The ideas are to properly formulate discrete-time multiple-input multiple-output (MIMO) signal models by converting real multi-rate users into single-rate virtual users, followed by the use of FKMA for extraction of virtual users' data sequences associated with the desired user, and recovery of the data sequence of the desired user from estimated virtual users' data sequences. Therefore, two multi-rate BMDAs (with either a single receive antenna or multiple receive antennas), which also enjoy the merits of super-exponential
    convergence rate and guaranteed convergence of the FKMA, are
    proposed in the thesis, one based on a convolutional MIMO signal model and the other based on an instantaneous MIMO signal model.

    For blind co-channel interference and intersymbol interference (ISI) reduction in cellular wireless communications, the FKMA is applied to the design of the conventional cascade space-time receiver (CSTR) in this thesis. However, the receiver performance is limited as the normalized kurtosis magnitude of the ISI-distorted signal of interest is small. Then a blind turbo space-time receiver (TSTR) is further proposed that applies spatial and temporal processing using FKMA in a cyclic fashion to
    estimate the desired data sequence. The performance of the
    proposed blind TSTR is insensitive to the value of the normalized kurtosis magnitude of the ISI-distorted signal of interest, and therefore is superior to that of the blind CSTR.

    This thesis also considers blind beamforming of multiuser
    orthogonal frequency division multiplexing (OFDM) systems.
    Assuming that the channel is static within one OFDM block, a blind beamforming algorithm by kurtosis maximization based on subcarrier averaging over one OFDM block is proposed, which basically comprises source extraction, time delay estimation and compensation, classification, and BMRC. The designed beamformer is exactly the same for all the subcarriers, effectively utilizes multipath diversity for performance gain, and is robust against the effects of correlated sources. Finally, some simulation results are presented to demonstrate the effectiveness of the proposed blind source separation algorithms, BMDAs, BSTD algorithm, blind CSTR and TSTR, and blind beamforming algorithm.

    CHINESE ABSTRACT i ABSTRACT iii ACKNOWLEDGMENTS v CONTENTS vii ACRONYMS xi 1 INTRODUCTION 1 2 REVIEW OF THE FKMA AND MSC PROCEDURE 13 2.1 FKMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 MSC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 TSEA AND NCMS SOURCE SEPARATION ALGORITHMS BY KURTOSIS MAXIMIZATION 21 3.1 Proposed TSEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Proposed NCMS Source Separation Algorithms . . . . . . . . . . . . . . . 26 3.2.1 Proposed NCMS-FKMA . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Proposed NCMS-TSEA . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3A Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 BLIND MULTIUSER DETECTION FOR QUASI-SYNCHRONOUS MODIFIED MC-CDMA SYSTEMS BY KURTOSIS MAXIMIZATION 51 4.1 MIMO Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 Proposed BMDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.1 Source Extraction by Kurtosis Maximization . . . . . . . . . . . . . 54 4.2.2 Channel Estimation and User Identification . . . . . . . . . . . . . 54 4.2.3 Initial Condition for vm . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 BMDA-BMRC Algorithm for Multiple Receive Antennas . . . . . . . . . . 56 4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 A BSTD ALGORITHM BY KURTOSIS MAXIMIZATION FOR THE DOWN-LINK OF MC-CDMA SYSTEMS 63 5.1 MIMO Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2 Conventional Space-Time Block Decoding Methods . . . . . . . . . . . . . 66 5.3 Proposed BSTD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3.1 Kurtosis Maximization . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3.2 Initial Condition for vm . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.3 Inverse of STC and BMRC Algorithm . . . . . . . . . . . . . . . . 69 5.3.4 Multiple Receive Antennas . . . . . . . . . . . . . . . . . . . . . . . 71 5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5A Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6 BLIND MULTIUSER DETECTION BY KURTOSIS MAXIMIZATION FOR ASYNCHRONOUS MULTI-RATE DS/CDMA SYSTEMS 79 6.1 MIMO Signal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1.1 Convolutional MIMO Signal Model . . . . . . . . . . . . . . . . . . 82 viii 6.1.2 Instantaneous MIMO Signal Model . . . . . . . . . . . . . . . . . . 83 6.2 Multi-Rate BMDA Using Convolutional MIMO Signal Model . . . . . . . . 85 6.2.1 Extraction of Source Signals . . . . . . . . . . . . . . . . . . . . . . 86 6.2.2 Recovery of the Desired User’s Symbol Sequence . . . . . . . . . . . 87 6.3 Multi-Rate BMDA Using Instantaneous MIMO Signal Model . . . . . . . . 90 6.3.1 Extraction of Source Signals . . . . . . . . . . . . . . . . . . . . . . 91 6.3.2 Recovery of the Desired User’s Symbol Sequence . . . . . . . . . . . 93 6.3.3 Performance and Complexity Comparison with Algorithm 1 . . . . 95 6.4 Multiple Receive Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.4.1 Full-Dimension Space-Time Processing . . . . . . . . . . . . . . . . 97 6.4.2 Temporal Processing Followed by BMRC . . . . . . . . . . . . . . . 98 6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7 TURBO SPACE-TIME RECEIVER BY KURTOSIS MAXIMIZATION FOR CCI/ISI REDUCTION IN CELLULAR WIRELESS COMMUNICATIONS 109 7.1 MIMO Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2 Blind Cascade Space-Time Receiver . . . . . . . . . . . . . . . . . . . . . . 111 7.2.1 Spatial Processing Using FKMA . . . . . . . . . . . . . . . . . . . . 111 7.2.2 Temporal Processing Using FKMA . . . . . . . . . . . . . . . . . . 112 7.3 Turbo Space-Time Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 BLIND BEAMFORMING FOR MULTIUSER OFDM SYSTEMS BY KURTOSIS MAXIMIZATION BASED ON SUBCARRIER AVERAGING 121 8.1 MIMO Signal Models for Beamforming of OFDM Systems . . . . . . . . . 122 8.1.1 MIMO Signal Model for Pre-FFT BFS . . . . . . . . . . . . . . . . 124 8.1.2 MIMO Signal Model for Post-FFT BFS . . . . . . . . . . . . . . . . 125 8.2 Review of the Fourier and Capon’s MV Beamformers . . . . . . . . . . . . 126 8.3 Post-FFT Fourier Beamformer by Subcarrier Averaging . . . . . . . . . . . 129 8.4 Blind Post-FFT KMBFA by Subcarrier Averaging . . . . . . . . . . . . . . 133 8.4.1 Source Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.4.2 Time Delay Estimation and Compensation (TDEC) . . . . . . . . . 140 8.4.3 Classification and BMRC . . . . . . . . . . . . . . . . . . . . . . . . 141 8.4.4 Proposed Blind Post-FFT KMBFA . . . . . . . . . . . . . . . . . . 143 8.4.5 Robustness of the Blind Post-FFT KMBFA to Correlated Sources . 144 8.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8A Proof of Lemma 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8B Proof of Lemma 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 8C Proof of Theorem 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9 CONCLUSIONS AND FUTURE RESEARCHES 157 BIBLIOGRAPHY 163 PUBLICATION LIST OF THE AUTHOR 171

    [1] P. Comon, “Independent component analysis, a new concept?,” Signal Processing,
    vol. 36, pp. 287-314, Apr. 1994.
    [2] A. Hyv¨arinen, J. Karhunen, and E. Oja, Independent Component Analysis. New
    York: Wiley-Interscience, 2001.
    [3] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing: Learning
    Algorithms and Applications. New York: Wiley, 2002.
    [4] L. Tong, R.-W. Liu, V. C. Soon, and Y.-F. Huang, “Indeterminacy and identifiability
    of blind identification,” IEEE Trans. Circuits and Systems, vol. 38, pp. 499-509, May
    1991.
    [5] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A blind source
    separation technique using second-order statistics,” IEEE Trans. Signal Processing,
    vol. 45, pp. 434-444, Feb. 1997.
    [6] L. Tong, V. C. Soon, Y.-F. Huang, and R.-W. Liu, “AMUSE: A new blind identification
    algorithm,” Proc. IEEE International Symposium on Circuits and Systems,
    New Orleans, LA, May 1-3, 1990, pp. 1784-1787.
    [7] C. Chang, Z. Ding, S. F. Yau, and F. H. Y. Chan, “A matrix-pencil approach to blind
    separation of non-white sources in white noise,” Proc. IEEE International Conference
    on Acoustics, Speech, and Signal Processing, Seattle, WA, May 12-15, 1998, pp. 2485-
    2488.
    [8] N. Delfosse and P. Loubaton, “Adaptive blind separation of independent sources: A
    deflation approach,” Signal Processing, vol. 45, pp. 59-83, Feb. 1995.
    [9] C. L. Nikias and A. P. Petropulu, Higher-Order Spectral Analysis: A Nonlinear
    Signal Processing Framework. Englewood Cliffs, NJ: Prentice-Hall, 1993.

    [10] J.-F. Cardoso, “Source separation using higher order moments,” Proc. IEEE International
    Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, May
    23-26, 1989, pp. 2109-2112.
    [11] A. Hyv¨arinen and E. Oja, “A fixed-point algorithm for independent component analysis,”
    Neural Computation, vol. 9, pp. 1483-1492, 1997.
    [12] Z. Ding, “A new algorithm for automatic beamforming,” Proc. 25th Asilomar Conference
    on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 4-6, 1991, pp.
    689-693.
    [13] Y. Inouye and K. Tanebe, “Super-exponential algorithms for multichannel blind deconvolution,”
    IEEE Trans. Signal Processing, vol. 48, pp. 881-888, Mar. 2000.
    [14] Z. Ding and T. Nguyen, “Stationary points of a kurtosis maximization algorithm for
    blind signal separation and antenna beamforming,” IEEE Trans. Signal Processing,
    vol. 48, pp. 1587-1596, June 2000.
    [15] C.-Y. Chi and C.-Y. Chen, “Blind beamforming and maximum ratio combining by
    kurtosis maximization for source separation in multipath,” Proc. IEEE Workshop
    on Signal Processing Advances in Wireless Communications, Taoyuan, Taiwan, Mar.
    20-23, 2001, pp. 243-246.
    [16] C.-Y. Chi, C.-Y. Chen, C.-H. Chen, and C.-C. Feng, “Batch processing algorithms for
    blind equalization using higher-order statistics,” IEEE Signal Processing Magazine,
    vol. 20, pp. 25-49, Jan. 2003.
    [17] K. Yang, T. Ohira, Y. Zhang, and C.-Y. Chi, “Super-exponential blind adaptive
    beamforming,” IEEE Trans. Signal Processing, vol. 52, pp. 1549-1563, June 2004.
    [18] J.-F. Cardoso, “Infomax and maximum likelihood for blind source separation,” IEEE
    Signal Processing Letters, vol. 4, pp. 112-114, Apr. 1997.
    [19] K. Matsuoka and M. Kawamoto, “A neural net for blind separation of nonstationary
    signal sources,” Proc. IEEE International Conference on Neural Networks, vol. 1,
    Orlando, FL, June 27-July 2, 1994, pp. 221-232.
    [20] S. Choi and A. Cichocki, “Blind separation of nonstationary and temporally correlated
    sources from noisy mixtures,” Proc. IEEE Signal Processing Society Workshop
    on Neural Networks for Signal Processing, vol. 1, Sydney, NSW, Dec. 11-13, 2000,
    pp. 405-414.

    [21] S. Choi and A. Cichocki, “Blind separation of nonstationary sources in noisy mixtures,”
    IEEE Electronics Letters, vol. 36, pp. 848-849, Apr. 2000.
    [22] D.-T. Pham and J.-F. Cardoso, “Blind separation of instantaneous mixtures of nonstationary
    sources,” IEEE Trans. Signal Processing, vol. 49, pp. 1837-1848, Sept.
    2001.
    [23] J. Zhang, L. Wei, and Y. Wang, “Computational decomposition of molecular signatures
    based on blind source separation of non-negative dependent sources with NMF,”
    Proc. IEEE Workshop on Neural Networks for Signal Processing, Sept. 17-19, 2003,
    pp. 409-418.
    [24] C.-Y. Chi, C.-C. Feng, C.-H. Chen, and C.-Y. Chen, Blind Equalization and System
    Identificaiton. London: Springer, 2006.
    [25] J. K. Tugnait, “Identification and deconvolution of multichannel linear non-Gaussian
    processes using higher order statistics and inverse filter criteria,” IEEE Trans. Signal
    Processing, vol. 45, pp. 658-672, Mar. 1997.
    [26] C.-Y. Chi and C.-H. Chen, “Cumulant based inverse filter criteria for MIMO blind
    deconvolution: Properties, algorithms, and application to DS/CDMA systems in
    multipath,” IEEE Trans. Signal Processing, vol. 49, pp. 1282-1299, July 2001.
    [27] C.-Y. Chi, C.-H. Chen, and C.-Y. Chen, “Blind MAI and ISI suppression for
    DS/CDMA systems using HOS-based inverse filter criteria,” IEEE Trans. Signal
    Processing, vol. 50, pp. 1368-1381, June 2002.
    [28] S. Hara and R. Prasad, “Overview of multi-carrier CDMA,” IEEE Communications
    Magazine, vol. 35, pp. 126-133, Dec. 1997.
    [29] S. Tsumura and S. Hara, “Design and performance of quasi-synchronous multi-carrier
    CDMA system,” Proc. IEEE Vehicular Technology Conference, vol. 2, Atlantic City,
    NJ, Oct. 7-11, 2001, pp. 843-847.
    [30] F. Verde, “Subspace-based blind multiuser detection for quasi-synchronous MCCDMA
    systems,” IEEE Signal Processing Letters, vol. 11, pp. 621-624, July 2004.
    [31] A. Wittneben, “Basestation modulation diversity for digital SIMULCAST,” Proc.
    IEEE Vechicular Technology Conference, St. Louis, USA, May 19-22, 1991, pp. 848-
    853.

    [32] S.M. Alamouti, “A simple transmit diversity technique for wireless communications,”
    IEEE Journal on Selected Areas in Communications, vol. 16, pp. 1451-1458, Oct.
    1998.
    [33] W. Sun, H. Li, and M. Amin, “MMSE detection for space-time coded MC-CDMA,”
    Proc. IEEE International Conference on Communications, PA, USA, May 11-15,
    2003, pp. 3452-3456.
    [34] D. Wong and T.-J. Lim, “Soft handoffs in CDMA mobile systems,” IEEE Personal
    Communications, vol. 4, pp. 6-17, Dec. 1997.
    [35] S. Verdu, Multiuser Detection. Cambridge, U.K.: Cambridge Univ. Press, 1998.
    [36] S. Moshavi, “Multi-user detection for DS-CDMA communications,” IEEE Communications
    Magazine, vol. 34, pp. 124-136, Oct. 1996.
    [37] T. Ojanpera and R. Prasad, “Overview of air interface multiple access for IMT-
    2000/UMTS,” IEEE Communications Magazine, vol. 36, pp. 82-86, Sept. 1998.
    [38] M. Zeng, A. Annamalai, and V. K. Bhargava, “Harmonization of global thirdgeneration
    mobile systems,” IEEE Communications Magazine, vol. 38, pp. 94-104,
    Dec. 2000.
    [39] C.-L. I. and R. D. Gitlin, “Multi-code CDMA wireless personal communications
    networks,” Proc. IEEE International Conference on Communications, vol. 2, Seattle,
    WA, June 18-22, 1995, pp. 1060-1064.
    [40] T. Ottosson and A. Svensson, “Multi-rate schemes in DS/CDMA systems,” Proc.
    IEEE 45th Vehicular Technology Conference, vol. 2, Chicago, IL, July 25-28, 1995,
    pp. 1006-1010.
    [41] M. K. Tsatsanis, Z. Xu, and X. Lu, “Blind multiuser detectors for dual rate DSCDMA
    systems over frequency selective channels,” Proc. European Signal Processing
    Conference, vol. 2, Tampere, Finland, Sept. 5-8, 2000, pp. 631-634.
    [42] S. Roy and H. Yan, “Blind channel estimation in multi-rate CDMA systems,” IEEE
    Trans. Communications, vol. 50, pp. 995-1004, June 2002.
    [43] J. Ma and J. K. Tugnait, “Blind detection of multirate asynchronous CDMA signals
    in multipath channels,” IEEE Trans. Signal Processing, vol. 50, pp. 2258-2272, Sept.
    2002.

    [44] Z. Xu and P. Liu, “Code constrained CMA-based multirate multiuser detection,”
    Proc. IEEE Conference Record of the Thirty-fifth Asilomar Conference on Signals,
    Systems and Computers, vol. 2, Pacific Grove, CA, Nov. 4-7, 2001, pp. 1455-1459.
    [45] M. Saquib, R. D. Yates, and A. Ganti, “An asynchronous multirate decorrelator,”
    IEEE Trans. Communications, vol. 48, pp. 739-742, May 2000.
    [46] M.-H. Chung, K.-C. Chen, and M.-Y. You, “MMSE multiuser detection for multirate
    wideband CDMA communications,” Proc. IEEE International Symposium on
    Personal, Indoor and Mobile Radio Communications, vol. 1, London, Sept. 18-21,
    2000, pp. 534-538.
    [47] U. Mitra, “Comparison of maximum-likelihood-based detection for two multirate
    access schemes for CDMA signals,” IEEE Trans. Communications, vol. 47, pp. 64-
    77, Jan. 1999.
    [48] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2001.
    [49] M. K. Tsatsanis and Z. Xu, “Performance analysis of minimum variance CDMA
    receivers,” IEEE Trans. Signal Processing, vol. 46, pp. 3014-3022, Nov. 1998.
    [50] M. Torlak and G. Xu, “Blind multiuser channel estimation in asynchronous CDMA
    systems,” IEEE Trans. Signal Processing, vol. 45, pp. 137-147, Jan. 1997.
    [51] S. E. Bensley and B. Aazhang, “Subspace-based channel estimation for code division
    multiple access communication systems,” IEEE Trans. Communications, vol. 44, pp.
    1009-1020, Aug. 1996.
    [52] M. K. Tsatsanis and G. B. Giannakis, “Optimal decorrelating receivers for
    DS/CDMA systems: A signal processing framework,” IEEE Trans. Signal Processing,
    vol. 44, pp. 3044-3055, Dec. 1996.
    [53] X. Wang and H. V. Poor, “Blind equalization and multiuser detection in dispersive
    CDMA channels,” IEEE Trans. Communications, vol. 46, pp. 91-103, Jan. 1998.
    [54] T. Ristaniemi and J. Joutsensalo, “Advanced ICA-based receivers for block fading
    DS-CDMA channels,” Signal Processing, vol. 82, pp. 417-431, Mar. 2002.
    [55] O. Shalvi and E. Weinstein, “Super-exponential methods for blind deconvolution,”
    IEEE Trans. Information Theory, vol. 39, pp. 504-519, Mar. 1993.

    [56] J. Jelitto and G. Fettweis, “Reduced dimension space-time processing for multiantenna
    wireless systems,” IEEE Wireless Communications Magazine, vol. 9, pp.
    18-25, Dec. 2002.
    [57] J.-W. Liang and A. J. Paulraj, “Two stage CCI/ISI reduction with space-time processing
    in TDMA cellular networks,” Proc. 30th Asilomar Conference on Signals,
    Systems, and Computers, vol. 1, Pacific Grove, CA, Nov. 3-6, 1996, pp. 607-611.
    [58] M. Budsabathon, Y. Hara, and S. Hara, “Optimum beamforming for pre-FFT OFDM
    adaptive antenna array,” IEEE Trans. Vehicular Technology, vol. 53, pp. 945-955,
    July 2004.
    [59] Y. Zeng and T. S. Ng, “A subspace method for channel estimation of multi-user
    multi-antenna OFDM system,” Proc. IEEE International Symposium on Circuits
    and Systems, vol. 3, Bangkok, Thailand, May 25-28, 2003, pp. III-52-III-55.
    [60] R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston:
    Artech House, 1999.
    [61] M. Okada and S. Komaki, “Pre-DFT combining space diversity assisted COFDM,”
    IEEE Trans. Vehicular Technology, vol. 50, pp. 487-496, Mar. 2001.
    [62] D. Bartolom´e and A. I. P´erez-Neira, “MMSE techniques for space diversity receivers
    in OFDM-based wireless LANs,” IEEE Journal on Selected Areas in Communications,
    vol. 21, pp. 151-160, Feb. 2003.
    [63] H. Matsuoka and H. Shoki, “Comparison of pre-FFT and post-FFT processing adaptive
    arrays for OFDM systems in the presence of co-channel interference,” Proc. IEEE
    International Symposium on Personal, Indoor and Mobile Radio Communications,
    vol. 2, Beijing, China, Sept. 7-10, 2003, pp. 1603-1607.
    [64] Z. Lei and F.P.S. Chin, “Post and pre-FFT beamforming in an OFDM system,”
    Proc. IEEE 59th Vehicular Technology Conference, vol. 1, Milan, Italy, May 17-19,
    2004, pp. 39-43.
    [65] V. Venkataraman, R. E. Cagley, and J. J. Shynk, “Adaptive beamforming for interference
    rejection in an OFDM system,” Proc. IEEE Conference Record of the
    Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 1,
    Pacific Grove, CA, Nov. 9-12, 2003, pp. 507-511.
    [66] J. C. Liberti and T. S. Rappaport, Smart Antennas for Wireless Communications:
    IS-95 and Third Generation CDMA Applications. New Jersey: Prentice Hall, 1999

    [67] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE,
    vol. 57, pp. 1408-1418, Aug. 1969.
    [68] T.-J. Shan and T. Kailath, “Adaptive beamforming for coherent signals and interference,”
    IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 33, pp. 527-536,
    June 1985.
    [69] H. Cox, R. Zeskind, and M. Owen, “Robust adaptive beamforming,” IEEE Trans.
    Acoustics, Speech, and Signal Processing, vol. 35, pp. 1365-1376, Oct. 1987.
    [70] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly constrained
    adaptive beamforming,” IEEE Trans. Antennas and Propagation, vol. 30, pp. 27-34,
    Jan. 1982.
    [71] A. Luthra, “A solution to the adaptive nulling problem with a look-direction constraint
    in the presence of coherent jammers,” IEEE Trans. Antennas and Propagation,
    vol. 34, pp. 702-710, May 1986.
    [72] V. Reddy, A. Paulraj, and T. Kailath, “Performance analysis of the optimum beamformer
    in the presence of correlated sources and its behavior under spatial smoothing,”
    IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 35, pp. 927-936,
    July 1987.
    [73] K. Buckley, “Spatial/spectral filtering with linearly constrained minimum variance
    beamformers,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 35, pp.
    249-266, Mar. 1987.
    [74] Y.-Y. Cheng, Y. Lee, and H.-J. Li, “Subspace-MMSE blind channel estimation for
    multiuser OFDM with receiver diversity,” Proc. IEEE Global Telecommunications
    Conference, vol. 4, San Francisco, CA, Dec. 1-5, 2003, pp. 2295-2299.
    [75] C.-Y. Chi, C.-Y. Chen, C.-H. Chen, C.-C. Feng, and C.-H. Peng, “Blind identification
    of SIMO systems and simultaneous estimation of multiple time delays from HOSbased
    inverse filter criteria,” IEEE Trans. Signal Processing, vol. 52, pp. 2749-2761,
    Oct. 2004.
    [76] J. M. Mendel, “Tutorial on higher-order statistics (spectra) in signal processing and
    system theory: theoretical results and some applications,” Proc. IEEE, vol. 79, pp.
    278-305, Mar. 1991.
    [77] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Baltimore: Johns
    Hopkins, 1996.

    [78] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge University
    Press, 1985.
    [79] C.-Y. Chi and C.-H. Chen, “Two-dimensional frequency-domain blind system identification
    using higher order statistics with application to texture synthesis,” IEEE
    Trans. Signal Processing, vol. 49, pp. 864-877, Apr. 2001.
    [80] B. Porat and B. Friedlander, “Analysis of the asymptotic relative efficiency of the
    MUSIC algorithm,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 36,
    pp. 532-544, Apr. 1988.
    [81] M. D. Zoltowski, G. M. Kautz, and S. D. Silverstein, “Beamspace root-MUSIC,”
    IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 41, pp. 344-364, Jan.
    1993.
    [82] C.L. Nikias and A.P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal
    Processing Framework, Prentice-Hall, Englewood Cliffs, New Jersey, 1993.
    170

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE