研究生: |
蘇克拉 Paritosh Shukla |
---|---|
論文名稱: |
過度金屬催化有機合成反應:鎳與鈷金屬錯合物於偶合、環化及製備雜環反應上的應用 Transition Meatal catalyzed Organic Synthesis: Innovative Use of Nickel and Cobalt Complexes for Couplings, Carbocyclizations and Preparation of Heterocyclics |
指導教授: |
鄭建鴻
Chien-Hong Cheng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 276 |
中文關鍵詞: | 鎳 、催化 、偶合 、環化 |
外文關鍵詞: | Nickel, catalyst, coupling, carbocyclization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文描述以鎳或鈷金屬在有機合成上,以偶合反應來形成雜環或環化反應,總共分成三個部分,四個章節。第一章是以鎳金屬催化鄰碘苯酯與oxabenzonorbornadiene衍生物進行反應,得到一系列具有不錯產率的苯環香豆素。此外,在同一章節裡,以相同反應條件也可以延伸進行分子間的環化反應。第二章與第三章裡,則是談論有關於鎳與鈷金屬催化碘烷化合物與易反應的烯類,進行還原偶合反應得到具有長碳鍊的有機化合物。第四章是以鄰碘苯醛或鄰碘苯酮為起使物,在鎳金屬的催化下得到具有多環的有機酮化合物,其反應機構包含了□-烷基的離去過程。
第一章以鎳金屬催化製備香豆素,香豆素可以應用在藥物合成的前驅物,或是應用在有機發光材料領域。以鄰碘苯酯與與oxabenzonorbornadiene衍生物在鎳金屬的催化下進行反應,可以合成出一系列具有高產率的苯環香豆素。
在此反應條件下,可以藉由鎳金屬催化合成具有各種不同官能基的苯環香豆素。 此反應機構已被發表研究,我們也嘗試著進一步合成出內醯胺化合物。
在相同的鎳金屬催化條件下,起使物改成鄰碘苯胺亦可進行分子間環化反應得到具有不錯產率的內醯胺化合物。
第二章討論的主題,是以鎳金屬催化飽和碘烷化合物與具有拉電子基的烯類進行偶合反應,得到還原飽和且產率相當不錯的偶合產物。
此反應包含許多種類的一級、二級、三級碘烷或溴烷化合物,與反應活性高的烯類,如:共軛烯酯,共軛烯酮或醯胺類,可以得到飽和長碳鍊的偶合產物。
第三章則以鈷金屬催化鹵烷基化合物與與具有拉電子基的烯類進行偶合反應,得到還原飽和且產率相當不錯的偶合產物。此反應中間體是經由氧化加成而非形成自由基來完成反應。第四章是鎳金屬催化鄰碘苯醛或鄰碘苯酮與烯類進行偶合反應,得到多元環的有機酮化合物。
與之前研究不同的是,就算以鄰碘苯酮為起使物,其產物依舊是有機酮類而非有機醇類。這種結果我們推論是經由□-烷基離去的步驟,此種過程在鎳金屬的催化中未曾發現,藉由分離反應中的副產物可以對反應機構有更進一步的瞭解。
The thesis describes nickel and cobalt-catalysed organic synthesis leading to couplings, carbocyclisations and formation of heterocyclic compounds. It is subdivided into three broad topics, spread out into a total of four chapters. The first chapter describes nickel-catalysed cyclisation of □-iodo-(z)-propenoates with oxabenzonorbornadiene derivatives resulting in the formation of benzocoumarins in good yields. An extension of the same methodology to reveal intramolecular cyclisation has also been described subsequently in the same chapter. The second and third chapters deal with reaction of saturated alkyl halides with reactive alkenes to form reductive coupling products in the presence of nickel and cobalt complexes. The fourth chapter consists of carbocyclisation of ortho-iodobenzaldehydes and ketones to give rise to polycyclic ketones in the presence of nickel complexes. The latter also includes an unusual □-alkyl elimination mechanism.
The first chapter details a nickel-catalysed strategy to prepare coumarins which are well known drug precursors and excellent materials for OLED (organic light emitting devices). Treatment of o-iodoesters with oxabenzonorbornadiene derivatives in the presence of nickel complex, led to the synthesis of benzocoumarins in good to excellent yields. The methodology developed by us can be utilized for the preparation of a variety of substituted coumarin derivatives by simple and efficient utilization of nickel catalysis. The mechanism of this interesting reaction has also been discussed. The later part of the same chapter recounts the extension of the methodology to prepare lactams. When an ortho-iodoamide is subjected to the same nickel-catalysed reaction conditons, intramolecular Heck-type cyclisation occurred to form lactams in good yields. The lactam framework synthesized by this methodology is contained in many naturally occurring compounds e.g. Oxychelerythrine, Oxyavicine etc.
The second chapter describes reaction of sp3 alkyl halides with electron withdrawing alkenes in the presence of nickel complex to give rise to reductively coupled products. The strategy encompasses a variety of primary, secondary and tertiary alkyl halides and bromides, which react with various activated olefins e.g. □□□-unsaturated esters, ketones, nitriles etc. to form saturated products in good to excellent yields. An extension of this reductive coupling methodology to oxabenzonorbornadienes has been depicted in a later part of the same chapter. Ring opening of oxabenzonorbornadienes to form substituted dihydronaphthol derivatives in the presence of nickel complexes is delineated in the final portions of the second chapter.
The third chapter recounts cobalt-catalysed reductive coupling of saturated alkyl halides with electron withdrawing alkenes to form saturated products. The cobalt-mediated reductive couplings are the first reports of such utilization of cobalt complexes. The mechanism of this reaction has been extensively explained. Mechanistically, the reaction appears quite different from the previously reported similar couplings, as evinced by the various experiments that were performed. The reasons for why the reaction may be an oxidative addition driven one rather than a radical mediated one, have been put forward.
The fourth chapter depicts the reaction of ortho-substituted iodobenzaldehydes and ketones with bicyclic alkene derivatives in the presence of nickel complexes to form annulated ketones. The first part of the chapter describes the reaction of o-iodobenzaldehydes with various bicyclic alkenes in the presence of nickel catalyst to form polycyclic ketones in good yields. In the second portion of this chapter, there is a description of the use of o-iodoketones with the same bicyclic alkenes to form similar polycyclic ketone products. It is surprising to note that when o-iodoaldehydes were replaced by o-iodoketones the products of the reaction were still the same i.e. ketones, although based on precedents, the expected products should have been cyclic tertiary alcohols. This bizarre behavior was investigated in detail by postulating unprecedented □-alkyl elimination during the reaction. Such □-carbon elimination is yet unknown in nickel-catalysed systems. Also, the fate of the moiety fractionated from the starting ketone compound was determined by isolating a key side product, leading to a better understanding of the mechanism of this reaction.
Chapter 1
(1) (a) Keating, G. J., O’Kennedy, R. In Coumarins: Biology, Applications and Mode of Action; O’Kennedy, R.; Thornes, R. D.; Wiley: NewYork, 1997, Chapter 2. (b) Murray, R. D.H.; Mendez, J.; Brown, S. A. The Natural Coumarins: Occurrence, Chemistry, and Biochemistry; Wiley: NewYork, 1982. (c) Naser-Hijazi, B.; Stolze, B.; Zanker, K. S. Second Preceedings of the International Society of Coumarin Investigators; Springer: Berlin, 1994. (d) Hepworth, J. D. In Comprehensive Heterocyclic Chemistry; Katritzky, A.; Rees, C. W.; Boulton, A. J., Mckillop, A., Ed.; Pergamon Press: Oxford, 1984; vol.3, Chapter 2.24, pp799-810. (e) Staunton, J. In Comprehensive Organic Chemistry; Barton, D. H. R.; Ollis, W. D., Eds.; Pergamon Press: Oxford, 1979; vol.4, Chapter 18.2, pp 651-653. (f) Livindtone, R. In Rodd’s Chemistry of Carbon Compounds; Coffey, S., Eds.; Elsevier: Amsterdam, 1977; Vol IV, Part E.
(2) (a) Antitumour activity: Harayama, T.; Yasuda, H. Heterocycles 1997, 46, 61 and references therein. (b) Anticoagulants: Pauli R. M.; In Handb. Exp. Pharmacol. 1997, 191. (c) HIV-1 protease inhibitors: Wang, S.; Milne, G. W. A.; Yan, X.; Posey, I. J.; Nicklaus, M. C.; Graham, L.; Rice, W. G. J. Med. Chem. 1996, 39, 2047. (d) antimetastatics: E. Gorelik, Cancer Res. 1987, 47, 809. (e) Dittmer, D. C.; Li, Qun; Avilov, D. V. J. Org. Chem. 2005, 70, 4682-4686.
(3) (a) Coumarin:, Biology, Applications and Mode of Action; Edited by Kennedy, R. O. and Thornes, R. D. 1997, Wiley.: New York. (b) Johnson, J. R. Org. React. 1942, 65, 210.
(4) Kaufman, K. D.; Kelly, R. C. J. Heterocyclic Chem. 1965, 2, 91.
(5) (a) Ganguly, A. K.; Joshi, B, J.; Kamat, V. N.; Manmade, A. H. Tetrahedron 1967, 23, 4777. Awasthi, A. K.; Tewari, R. S. Synthesis 1986, 1061.(a) Kalinin, A, V.; Da Silva, A, J, M.; Lopes, C, C.; Lopes, R, S, C.; Snieckus, V. Tetrahedron Lett. 1998, 39, 4995. Li, T, S.; Zhang, Z, H.; Feng, C. G. J. Chem. Res. Synop. 1 1998, 38.
(10) Singh, V.; Sing, J.; Kaur, K. P.; Kad, G. L. J. Chem. Res. Synop., 2 1997, 58.
(11) Connor, D.T.; Sorenson, R. J. J. Heterocyclic Chem. 1981, 18, 587.
(12) Nicolaides, D. N.; Adampoulos, S. G.; Lefkaditis, D. A.; Litnas, K. E. J. Chem. Soc., Perkin. Trans. 1 1990, 2127.
(13) Toplak, R.; Selic, L.; Sorsak, G.; Stanovnik, B. Heterocycles 1997, 45, 555.
(14) Somoid, J.; Stanovnik, B. Tetrahedron 1998, 54, 9799.
(15) George, B.; Nalband, H.; Shantu, A.; Stephen, S, H. J. Org. Chem. 1988, 53, 1007.
(16) An, Z. W.; Catellani, M.; Chiusoli, G. P. J. Organomet. Chem. 1989, 371, c51.Catellani, M.; Chiusoli, G. P.; Fagnola, M. C.; Solari, G. Tetrahedron Lett. 1994, 35, 5919.
(18) Catellani, M.; Chiusoli, G. P.; Fagnola, M. C.; Solari, G. Tetrahedron Lett. 1994, 35, 5923.
(19) Grigg, R.; Khalil, H.; Levett, P.; Virica, J.; Sridharan, V. Tetrahedron Lett, 1994, 35, 3197.
(20) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1996, 118, 6305.
(21) Kadnikov, D.V.; Larock, R. C. Org. Lett. 2000, 2, 3643.
(22) Li, K.; Zeng, Y.; Neuenswander, B.; Tunge, J. A. J. Org. Chem. 2005, 70, 6515-6518.
(23) (a) Harayama, T.; Yasuda, H.; Akiyama, T.; Takeuchi, Y.; Abe, H. Chem. Pharm. Bull. 2000, 6, 861. (b) Harayama, T.; Yasuda, H. Heterocycles 1997, 61.
(24) Rayabarapu, D. K.; Sambaiah, T.; Cheng, C. H. Angew. Chem. Int. Ed. 2001, 40, 1286.
(25) Organic Electroluminescent Materials and Devices; Miyata, S.; Nalwa, H. S.; Eds.; Gordon and Breach Publishers, Amsterdam, 1997, Chapters 5, 8, 12 and 14.
(26) (a) Shibata, T.; (Konishiroku Photo) Japan Patent 1994, 6, 122, 874. (b) Stampfl, J.; Tasch, S.; Leising, G.; Scherf, U. Synth. Met. 1995, 71, 2125. (c) Tang, C. –W.; Van slyke, S. A.; Chen, C. –H. J. Appl. Phys. 1989, 65, 3610.
(27) For recent reviews on metal-catalyzed carbocyclization, see: Grotjahn, D. B. In Comprehensive Organomatallic Chemistry II (Ed.: Hegedus, L. S.), Pergamon/Elsevier Science: Kidlington, 1995; Vol. 12, pp. 703, 741.
(28) (a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (b) Ojima, I.; Tzamarioudaki, M..; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635. (c) Fruhauf, H. W. Chem. Rev. 1997, 97, 523.
(29) (a) Ishii, H.; Ishikawa, T.; Haginiwa, J. Yakugaku Zasshi. 1977, 97, 890. (b) Ishii, H.; Ishikawa, T.; Murota, M.; Aoki, Y.; Harayama, T, J. Chem. Soc., Perkin Trans. 1 1993, 1019.
(30) Ishii, H.; Ishikawa, T.; Takeda, S.; Suzuki, M.; Harayama, T. Chem. Pharm. Bull. 1992, 40, 2002.
(31) Huang, D. –J.; Rayabarapu, D. K.; Li, L. –P.; Sambaiah, T.; Cheng, C. –H. Chem. Eur. J. 2000, 6, 3706.
(32) (a) Huang, D. –J.; Sambaiah, T.; Cheng, C. –H. New J. Chem. 1998, 22, 1147. (b) Sambaiah, T.; Huang, D. –J.; Cheng, C. –H. J. Chem. Soc. Perkin Trans. 1 2000, 195. (c) Sambaiah, T.; Li, L. –P.; Huang, D. –J.; Lin, C. –H.; Rayabarapu, D. K.; Cheng, C. –H. J. Org. Chem. 1999, 64, 36. (d) Hsiao, T. –Y.; Santhosh, K. C.; Liou, K. –F.; Cheng, C. –H. J. Am. Chem. Soc. 1998, 120, 12232.
(33) For recent Ni-catalyzed [2+2+2] cycloadditions, see (a) Ikeda, S.; Mori, N.; Sato, Y. J. Am. Chem. Soc. 1997, 119, 4779. (b) Mori, N.; Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 2722.
(34) (a) Peter, H.; Wren, S. A. C. J. Chem. Soc., Perkin Trans. 1 1990, 2089. (b) Gilchrist, T. L.; Wood, J. E. J. Chem. Soc., Perkin Trans. 1 1992, 9.
(35) For compounds with similar stereochemistry, see (a) Lautens, M.; Renaud, J. –H.; Hiebert, S. J. Am. Chem. Soc. 2000, 122, 1804 and references therein (b) Feng, C. –C.; Nandi, M.; Sambaiah, T.; Cheng, C. –H. J. Org. Chem. 1999, 64, 3539.
(36) Broka, C. A.; Ruhland, B. J. Org. Chem. 1992, 57, 4888.
(37) (a) Kende, A. S.; Liebeskind, L. S.; Braitsen, D. M. Tetrahedron Lett. 1975, 3375. (b) Zembayashi, M.; Tamao, K.; Yoshida, J.; Kumada, M. Tetrahedron Lett. 1977, 4089
(38) Krane, B. D.; Fegbule, M. O.; Shamma, M. J. Nat. Prod. 1984, 47, 1-43.
(39) Grigg, R.; Sridharan, V.; Stevenson, P.; Sukrithalingam, S.; Worakun, T. Tetrahedron 1990, 46, 4003-4018.
Chapter2
(1) (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633-639 (b) Shilov, E.; Shul’pin, G. B. Activation of C-H Bonds by Metal Complexes. Chem. Rev. 1997, 97, 2879-2932. (c) Kakiuchi, F.; Murai, S. Activation of C-H Bonds: Catalytic Reactions. In Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer: New York, 1999; pp 47-79. (c) Jones, W. D. Activation of C-H Bonds: Stoichiometric Reactions. In Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer: New York, 1999; pp 9-46. (d) Dyker, G. Angew. Chem., Int. Ed. 1999. 38, 1698-1712. (e) Fujiwara, Y.; Takaki, K.; Taniguchi, Y. Synlett. 1996, 591-599. (f) Gupta, M.; Hagen, C.; Kaska, W. C.; Cramer, R. E.; Jensen, C. M. J. Am. Chem. Soc. 1997, 119, 840-841 and references therein. (g) Reis, P. M.; Silva, J. A. L.; da Silva, J. J. R. F.; Pombeiro, A. J. L. Chem. Commun. 2000, 1845-1846.
(2) (a) Heck, R. F. Acc. Chem. Res. 1979, 12, 146 151; (b) Ma, S. Chin. J. Org. Chem. 1991, 11, 561 573; (c) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379 2411; (d) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2-7; (e) Crisp, G. T. Chem. Soc. Rev. 1998, 27, 427 436; (f) Lin, B. –L.; Liu, L.; Yao, F.; Luo, S. –W.; Chen, Q.; Guo, Q.-X. Organometallics 2004, 23, 2114.
(3) (a) Bra¨se, S.; de Meijere, A. In Metal-catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; Chapter 3. (b) Link, J. T.; Overman, L. E. In Metal-catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; Chapter 6. (c) Heck, R. F. Org. React. 1982, 27, 345-390. (d) Beletskaya, I. P.; Cheprakov, A. V. Chem. ReV. 2000, 100, 3009-3066.
(4) (a) Blanchard, P.; El Kortbi, M. S.; Fourrey, J. -L; Malka, R. -G. Tetrahedron Lett. 1992, 33, 3319 3322. (b) Fourrey, Tetrahedron Lett. 1992, 8069. Blanchard, P.; Da Silva, A. D.; Fourrey, J. -L; Machado, A. S.; Malka, R. -G. Tetrahedron Lett. 1992, 33, 8069 8072.
(5) Blanchard, P.; Da Silva, A.; El Kortbi, M. S.; Fourrey, J. -L. Malka, R. -G. D J. Org. Chem1993, 6517-6519
(6) Sestelo, J. P; Mascarenas, J. L.; Castedo, L.; Maurino, A. J. Org. Chem. 1993, 58, 118-123.
(7) Erdmann, P.; Schafer, J.; Springer, R.; Zeitz, H. –G.; Bernd, G. Helv. Chim. Act. 1992, 75, 638 644.
(8) Manchand, P. S.; Yiannikouros, G. P.; Belica, P. S.; Madan, P. J. Org. Chem. 1995, 60, 6574 6581.
(9) Bernd, G.; Thoma, G. Helv. Chim. Act. 1991, 4, 1135-1142.
(10) Lebedev, S. A.; Lopatina, V. S.; Petrov, E. S; Beletskaya, I. P. J. Organomet. Chem. 1988, 344, 253 259.
(11) Sustmann, R.; Hopp, P.; Holl, P. Tetrahedron Lett. 1989, 30, 689 692.
(12) Sim, T. B.; Choi, J.; Yoon, N. M. Tetrahedron Lett. 1996, 37, 3137 3140.
(13) Branchaud,B. P.; Detlefsen, W. D.; Tetrahedron Lett. 1991, 32, 6273-6276.
(14) Toda, S.; Miyamoto, M.; Kinoshita, H.; Inomata, K. Bull.Chem.Soc.Jpn. 1991, 64, 3600-3606.
(15) For a recent study and a review of transition-metal-catalyzed cross-coupling reactions of alkyl halides with organometallic reagents, see: (a) Cárdenas, D. J. Angew. Chem., Int. Ed. 2003, 42, 384 387. (b) Cárdenas, D. J. Angew. Chem., Int. Ed. 1999, 38, 3018 3020. (b). Luh, T. –Y; Leung, M.; Wong, K. -T. Chem. Rev. 2000, 100, 3187 – 3204. Several important papers concerning cross-coupling reactions using alkyl halides were subsequently reported; see, for example: (c) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 13662 – 13663; (d). Frisch, A. C; Shaikh, N.; Zapf, A;. Beller, M. Angew. Chem. 2002, 114, 4218 – 4221; Angew. Chem. Int. Ed. 2002, 41, 4056 – 4059; (e) Tsuji, T.; Yorimitsu, H.; Oshima, K.; Angew. Chem. 2002, 114, 4311 – 4313; Angew. Chem. Int. Ed. 2002, 41, 4137 – 4139; (f). Menzel, K ;. Fu, G. C ; J. Am. Chem. Soc. 2003, 125, 3718 – 3719; ( g). Lee, J.-Y ; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 5616 – 5617; (h) Zhou, J.;. Fu, G. C. J. Am. Chem. Soc. 2003, 125, 12 527 – 12530; (i). Eckhardt, M.; Fu, G. C.; J. Am. Chem. Soc. 2003, 125, 13642 – 13 643; (j). Zhou, J ;. Fu, G. C; J. Am. Chem. Soc. 2003, 125, 14726 – 14727; (k) Wiskur, S. L.; Korte, A.; Fu, G. C.; J. Am. Chem. Soc. 2004, 126, 82 – 83; (l) Zhou, J.;. Fu, G. C; J. Am. Chem. Soc., 2004, 126, 1340 – 1341; (m) Nakamura, M.;. Matsuo, K; S. Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686 – 3687; (n) Nagano, T.; Hayashi, T.; Org. Lett. 2004, 6, 1297 – 1299; (o) Martin, R.; Furstner, A. Angew. Chem. 2004, 116, 4045 – 4047; Angew. Chem. Int. Ed. 2004, 43, 3955 – 3957
(16) For an overview of the difficulty of achieving coupling reactions of Csp3-X electrophiles, see: (a) Cárdenas, D. J. Angew. Chem., Int. Ed. 2003, 42, 384-387. (b) Cárdenas, D. J. Angew. Chem., Int. Ed. 1999, 38, 3018-3020. (c): Luh, T.-Y.; Leung, M.-K; Wong, K.-T. Chem. Rev. 2000, 100, 3187-3204.
(17) (a) Metal catalyzed Cross-coupling Reactions; Diederich, P.; Stang, P. J. Eds.; Wiley-VCH, Weinheim, 1998, 12. (b) Cross Coupling Reactions: A Practical Guide; Miyaura, N., Ed.; Topics in Current Chemistry Series 219; Springer-Verlag: New York, 2002. (c) Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-i., Ed.; Wiley-Interscience: New York, 2002. (18) Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 3910.
(19) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 12527.
(20) Terao, J.; Watanabe, H.;Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222.
(21) Powell, D. A.; Maki, T.; Fu, G. C, J. Am. Chem. Soc, 2005, 127, 510.
(22) Nakamura, M; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc, 2004, 126, 3686.
(23) (a) Rayabarapu, D. K.; Cheng, C.-H. J. Am. Chem. Soc. 2002, 124, 5630. (b) Huang, Y.-C.; Majumdar, K. K.; Cheng, C.-H. J. Org. Chem. 2002; 67, 1682. (c) Rayabarapu, D. K.; Cheng, C.-H. Chem. Commun. 2002, 942. (d) Jeevanandam, A.; Korivi, R. P.; Huang, I.-W.; Cheng, C.-H. Org. Lett. 2002, 4, 807. (e) Shanmugasundaram, M.; Wu, M. -S.; Cheng, C. -H. Org. Lett. 2001, 3, 4233. (f) Hsiao, T. -Y.; Santhosh, K. C.; Liou, K.- F.; Cheng, C. -H. J. Am. Chem. Soc. 1998, 120, 12232. (g) Rayabarapu, D. K.; Yang, C. -H.; Cheng, C. -H. J. Org. Chem. 2003, 68, 6726. (h) Rayabarapu, D. K.; Cheng, C. -H., Chem. Eur. J. 2003, 9, 3164. (i) Rayabarapu, D. K.; Chiou, C. -F.; Cheng, C. -H. Org. Lett. 2002, 4, 1679. (j) Huang, D. -J.; Rayabarapu, D. K.; Li, L. -P.; Sambaiah, T.; Cheng, C. -H. Chem. Eur. J. 2000, 6, 3706. (k) Sambaiah, T.; Li, L. -P.; Huang, D. -J.; Lin, C. -H.; Rayabarapu, D. K.; Cheng, C. -H. J. Org. Chem. 1999, 64, 3663. (l) Sambaiah, T.; Huang, D. -J.; Cheng, C.-H. New J. Chem. 1998, 22, 1147.
(24) (a) Wang, C. C.; Lin, P. S.; Cheng, C. H. J. Am. Chem. Soc. 2002, 124, 9696-9697 (b) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: California, 1994, Chapter 4
(25) For precedents to similar reaction mechanisms reported by our lab see: Huang, Y. C.; Majumdar, K. K. J. Org. Chem., 2002, 67, 1682-1684 and references therein
(26) (a) White, J. D. Strategies and Tactics in Organic Synthesis; Lindberg, T., Ed.; Academic Press: New York, 1984; Chapter 13. (b) Lipshutz, B. H. Chem. Rev. 1986, 86, 795. (c) Vogel, P.; Fattori, D.; Gasparini, F.; Le Drain, C. Synlett. 1990, 173. Oxabicyclics as valuable intermediates, see: (a) B. H. Lipshutz, Chem. Rev. 1986, 86, 795. (b) Vogel, P.; Fattori, D.; Gasparini, F.; Le Drian, C. Synlett 1990, 173. (c) Lautens, M. Synlett 1993, 177. (d) Arjona, O.; Dios de, A.; Fernandez de la Pradilla, R.; Plumet, J.; Viso, A. J. Org. Chem. 1994, 59, 3906. For a review on ring-opening chemistry of oxabicyclic alkenes, see: Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48. For related references see: (a) Leong, P.; Lautens, M. J. Org. Chem. 2004, 69, 2194. (b) Lautens, M.; Dockendorff, C. Org. Lett. 2003, 5, 3695. (c) Lautens, M.; Dockendorff, C.; Fagnou, K. Malicki, A. Org. Lett. 2002, 4, 1311. (d) Lautens, M.; Fagnou, K. Tetrahedron 2001, 57, 5067. (e) Lautens, M.; Fagnou, K.; Taylor, M.; Rovis, T. J. Organomet. Chem. 2001, 624, 259. (f) Lautens, M.; Renaud, J.-L.; Hiebert, S. J. Am. Chem. Soc. 2000, 122, 1804. (g) Lautens, M.; Fagnou, K.; Rovis, T. J. Am. Chem. Soc. 2000, 122, 5650. (h) Lautens, M.; Fagnou, K.; Taylor, M. Org. Lett. 2000, 12, 1677. (i) Lautens, M.; Hiebert, S.; Renaud, J.-L. Org. Lett. 2000, 13, 1971. (j) Lautens, M.; Rovis, T. J. Am. Chem. Soc. 1997, 119, 11090. (k) Lautens, M.; Chiu, P.; Ma, S.; Rovis, T. J. Am. Chem. Soc. 1995, 117, 532. (l) Lautens, M.; Ma, S. J. Org. Chem. 1996, 61, 7246. (m) Lautens, M.; Rovis, T. J. Org. Chem. 1997, 62, 5246.
(27) (a) Duan, J. P.; Cheng, C. H. Tetrahedron Lett. 1993, 34, 4019. (b) Duan, J. P.; Cheng, C. H. Organometallics 1995, 14, 1608
(28) Feng, C. C.; Nandi, M.; Sambaiah, T.; Cheng, C. H. J. Org. Chem. 1999, 64, 3538.
(29) For a review on ring-opening chemistry of oxabicyclic alkenes, see: Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36. (3) For recent examples, see: (a) Lautens, M.; Hiebert, S. J. Am. Chem. Soc. 2004, 126, 1437-1447. (b) Cabrera, S.; Go´mez Arraya´s, R.; Carretero, J. C. Angew. Chem., Int. Ed. 2004, 43, 3944-3947. (c) Lautens, M.; Fagnou, K. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5455-5460. (d) Li, M.; Yan, X.-X.; Hong, W.; Zhu, X.-Z.; Cao, B.-X.; Sun, J.; Hou, X.-L. Org. Lett. 2004, 6, 2833-2835. (e) Leong, P.; Lautens, M. J. Org. Chem. 2004, 69, 2194-2196. (f) Dotta, P.; Kumar, P. G. A.; Pregosin, P. S. Organometallics 2004, 23, 2295-2304.
(30) Wu, M. S.; Rayabarapu, D. K. Cheng, C. H. J. Org. Chem. 2004, 69, 8407-841.
(31) (a) Toda, S.; Miyamoto, M.; Kinoshita, H.; Inomata, K. Bull. Chem. Soc. Jpn. 1991, 64, 3600.
(32) (a) Bureau, N.; Defiolle, D.; de Hemptinne, J. -C. Fluid Phase Equilibria 2002, 194-197, 831-846. (b) Marosi, L.; Schlenk, W. Jr. Justus Liebigs Annalen der Chemie 1973, 4, 584-598.
(33) Hauptmann, S.; Brandes, F.; Brauer, E.; Gabler, W. Journal fuer Praktische Chemie (Leipzig) 1964, 25, 56-68.
(34) (a) Baban, J. A.; Roberts, B. P.; Ingold, C. J. Chem Soc, Perkin Trans. 2 1988, 1195-1200. (b) Tomonori, Y; Hideo, T. Synlett 2004, 9, 1604-1606.
Chapter 3
(1) (a) Heck, R. F. Acc. Chem. Res. 1979, 12, 146 151; (b) Ma, S. Chin. J. Org. Chem. 1991, 11, 561 573; (c) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379 2411; (d) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2-7; (e) Crisp, G. T. Chem. Soc. Rev. 1998, 27, 427 436; (f) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009 3066. For stoichiometric metal mediated reductive couplings, see: (a) Blanchard, P.; M. S. El Kortbi; Fourrey, J. -L; Malka, R.-G. Tetrahedron Lett. 1992, 33, 3319 3322. (b) Blanchard, P.; Da Silva, A. D.; Fourrey, J. -L; Machado, A. S.; Malka, R.-G. Tetrahedron Lett. 1992, 33, 8069 8072.). (c) Blanchard, P.; Da Silva, A.; M. S. El Kortbi; Fourrey, J. -L; Malka, R.-G. D J. Org. Chem, 1993,6517-6519. (d) Sestelo, J. P.; Mascarenas, J. L.; Castedo, L.; Maurino, A., J. Org. Chem. 1993, 58, 118-123. (e) Erdmann, P.; Schafer, J.; Springer, R.; Zeitz, H.–G.; Bernd, G. Helv. Chim. Act. 1992, 75, 638 644. (f) Manchand, P. S.; Yiannikouros, G. P.; Belica, P. S.; Madan, P. J. Org. Chem. 1995, 60, 6574 6581. (g) Bernd, G.; Thoma, G. Helv. Chim. Act. 1991, 4, 1135-1142. For catalytic reductive couplings, see: (a) Lebedev, S. A.; Lopatina, V. S.; Petrov, E. S; Beletskaya, I. P. J. Organomet. Chem. 1988, 344, 253 259. (b) Sustmann, R.; Hopp, P.; Holl, P. Tetrahedron Lett. 1989, 30, 689 692. (c) Sim, T. B.; Choi, J.; Yoon, N. M. Tetrahedron Lett. 1996, 37, 3137 3140. (d) Branchaud, B. P.; Detlefsen, W. D.; Tetrahedron Lett. 1991, 32, 6273-6276. (e) Toda, S.; Miyamoto, M.; Kinoshita, H.; Inomata, K. Bull.Chem.Soc.Jpn. 1991, 64, 3600-3606.
(2) Branchaud, B. P.; Detlefsen, W. D.; Tetrahedron Lett. 1991, 32, 6273-6276.
(3) Iyer, S. J. Organomet. Chem. 1995, 490, c27-c28.
(4) Ikeda, Y.; Nakamura, T.; Yorimitsu, H, Oshima, K. J. Am. Chem. Soc., 2002, 124, 6514.
(5) Fujioka, T.; Nakamura, T.; Yorimitsu, H, Oshima, K. Org. Lett. 2002, 4, 2257.
(6) Ohmiya, H.; Tsuji T.; Yorimitsu, H.; Oshima, K. Chem. Eur. J. 2004, 10, 5640 5648.
(7) (a) Wang, C. C.; Lin, P. S.; Cheng, C. H. J. Am. Chem. Soc. 2002, 124, 9696 9697.
(8) (a) Cárdenas, D. J. Angew. Chem., Int. Ed. 2003, 42, 384-387. (b) Cárdenas, D. J. Angew. Chem., Int. Ed. 1999, 38, 3018-3020. (c) Luh, T.-Y.; Leung, M.-K; Wong, K.-T. Chem. Rev. 2000, 100, 3187-3204.
(9) Newcomb, M.; Choi, S. Y.; Horner, J. H. J. Org. Chem. 1999, 64, 1225.
(10) Wakatsuki, Y.; Yamazaki, H. In Mononuclear Transition Metal Complexes Part III. Metallocycle Complexes; Kaesz, H. D., Ed.; Inorganic Syntheses Series 26; John Wiley and Sons, New York, 1989.
(11) For precedents similar to the proposed mechanism, see: (a) Chang, K. J.; Rayabarapu, D. K.; Cheng, C. H. Org. Lett 2003, 5, 3963 3966. (b) Chang, K. J.; Rayabarapu, D. K.; Cheng, C. H. J. Org. Chem. 2004, 69, 4781 4787 and references therein.
(12) (a) Labinger, J. A; Osborn, J. A. Inorg. Chem. 1980, 19, 3230 3236. (b) Labinger, J. A; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236 3242. (c) Branchaud, B. P.; Yu, G. X. Organometallics, 1991, 10, 3795 3797. (d) Cheng, C. H.; Eisenberg, R. Inorg. Chem. 1977, 18, 1418 1423. (e) Cheng, C. H.; Spivack, B. D.; Eisenberg, R. J. Am. Chem. Soc. 1977, 99, 3003 3011. (f) Collman, J. P. Acc. Chem. Res. 1968, 1, 136 143.
(13) Schrauzer, G. N.; Deutsch, R. J. Am. Chem. Soc., 1969, 91, 3341-3350, and references therein.
(14) Aono, M.; Terao, Y.; Achiwa, K. Heterocycles 1995, 40, 249-260.
(15) (a) Heinsman, N. W. J. T.; Orrenius, S. C.; Marcelis, C. L. M.; De Sousa Teixeira, A.; Franssen, M. C. R.; Van Der Padt, A.; Jongejan, J. A.; De Groot, Ae. Biocatalysis and Biotransformation 1998, 16, 145-162. (b) Kim, H. J.; Lindsay, R. C. J. Food Composition and Analysis 1989, 2, 118-131. (c) Vasi, I. G.; Nanavati, N. T. J. Inst. Chemists (India) 1976, 48, Pt. 4, 198-201.
(16) (a) Huo, S. Org. Lett. 2003, 5, 423-425. (b) Wipf, P.; Venkataraman,S. J. Org. Chem. 1993, 58, 3455-3458.
(17) (a) Donkor, I. O.; Li, H.; Queener, S. F. Eur. J. Med. Chem. 2003, 38, 605-611. (b) Tan, Z.; Qu, Z.; Chen, B.; Wang, J. Tetrahedron 2000, 56, 7457-7461.
Chapter4
(1) (a) Jung, M. E. Tetrahedron 1976, 32, 3. (b) Posner, G. H. Chem. Rev. 1986, 86, 831. (c) Molander, G. A. Acc. Chem. Res. 1998, 31, 603. (d) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689. (e) Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K. C. J. Org. Chem. 1995, 60, 3270. (f) Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org. Chem. 1993, 58, 4579. (g) Larock, R. C.; Fried, C. A. J. Am. Chem. Soc. 1990, 112, 5882. (h) Larock, R. C.; Berrios-Pen˜a; N.; Narayanan, K. J. Org. Chem. 1990, 55, 3447. (i) Larock, R. C.; Yum, E. K. Synlett 1990, 529. (j) Larock, R. C.; Berrios- Pen˜a, N. G.; Fried, C. A. J. Org. Chem. 1991, 56, 2615. (k) Larock, R. C.; Berrios-Pen˜a, N. G.; Fried, C. A.; Yum, E. K.; Tu, C.; Leong, W. J. Org. Chem. 1993, 58, 4509. (l) Larock, R. C.; Zenner, J. M. J. Org. Chem. 1995, 60, 482. (m) Larock, R. C.; Guo, L. Synlett 1995, 465. (n) Larock, R. C.; Yum, E. K.Tetrahedron 1996, 52, 2743. (o) Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M. J. Org. Chem. 1997, 62, 7536. (p) Larock, R. C.; Tian, Q. J. Org. Chem. 1998, 63, 2002. (q) Larock, R. C.; He, Y.; Leong, W. W.; Han, X.; Refvik, M. D.; Zenner, J. M. J. Org. Chem. 1998, 63, 2154. (r) Larock, R. C.; Doty, M. J.; Han, X. Tetrahedron Lett. 1998, 39, 5143. (s) Larock, R. C.; Han, X.; Doty, M. J. Tetrahedron Lett. 1998, 39, 5713. (t) Roesch, K. R.; Larock, R. C. J. Org. Chem. 1998, 63, 5306. (u) Larock, R. C.; Tu, C.; Pace, P. J. Org. Chem. 1998, 63, 6859. (v) Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652. (w) English, D. S.; Das, K.; Zenner, J. M.; Zhang, W.; Kraus, G. A.; Larock, R. C.; Petrich, J. W. J. Phys. Chem. 1997, 101, 3235.
(2) (a) De Frutos, O.; Curran, D. P. J. Comb. Chem. 2000, 2, 639. (b) Miao, H.; Yang, Z. Org. Lett. 2000, 2, 1765.
(3) (a) Tietze, L. F. Chem. Rev. 1996, 96, 115. (b) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259.
(4) (a) Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis; John Wiley: Chichester, U.K., 1995. (b) Soderberg, B. C. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 12, p 241.
(5) (a) Negishi, E.; Cope´ret, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. Rev. 1996, 96, 365. (b) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon: Oxford, 2000. (c) Ba¨ ckvall, J.-E. Pure Appl. Chem. 1992, 64, 429.
(6) (a) Larock, R. C. J. Organomet. Chem. 1999, 576, 111. (b) Ba¨ckvall, J.-E. New J. Chem. 1990, 14, 447. (c) Collins, I. J. Chem. Soc., Perkin Trans. 1 2000, 2845
(7) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95.
(8) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635-662.
(9) Wu, G.; Rheingold, A.; Geib, S. J.; Heck, R. F. Organometallics 1987, 6, 1941-1946.
(10) (a) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689. (b) Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K. C. J. Org. Chem. 1995, 60, 3270. (c) Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org. Chem. 1993, 58, 4579.
(11) Quan, L. G.; Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 3545.
(12) Quan, L. G.; Gevorgyan, V.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 4089.
(13) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689.
(14) Zhang, D.; Yum, E. K.; Liu, J. Larock, R. Org. Lett. 2005, ASAP
(15) Larock, R. C.; Tian, Q.; Pletnev, A. A. J. Am. Chem. Soc. 1999, 121, 3238-3239.
(16) Pletnev, A. A.; Tian, Q.; Larock, R. C. J. Org. Chem. 2002, 67, 9276-9287.
(17) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. Organometallics 1991,10, 3344.
(18) (a) Kondo, T.; Kodoi, K.; Nishinaga, E.; Okada, T.; Morisaki, Y.; Watanabe, Y.; Mitsudo, T. J. Am. Chem. Soc. 1998, 120, 5587. (b) Chow, H.-F.; Wan, C.-W.; Low, K.-H.; Yeung, Y.-Y. J. Org. Chem. 2001, 66, 1910. (c) Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. Org. Lett. 2003, 5, 2997. (d) Nishimura, T.; Uemura, S. Synlett 2004, 201 and references therein. (e) Nishimura, T.; Nishiguchi, Y.; Maeda, Y.; Uemura, S. J. Org. Chem. 2004, 69, 5342. (f) Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2004, 126, 8658.
(19) For C-C cleavage of an amine by a pathway other than □-elimination, see: Zhang, X.; Emge, T. J.; Ghosh, R.; Goldman, A. S.; J. Am. Chem. Soc. 2005, 127, 8250.
(20) Zhao, P.; Hartwig, J. F. J. Am. Chem. Soc 2005 ASAP and references therein.
(21) (a) Kakiuchi, F.; Sato, T.; Tsujimoto, T.; Yamauchi, M.; Chatani, N.; Murai, S. Chem. Lett. 1998, 1053 and references therein. (b) Fukuyama, T.; Chatani, N.; Tatsumi, J.; Kakiuchi, F. Murai, S. J. Am. Chem. Soc. 1998, 120, 11522 and references cited therein. (c) Lim, Y.-G.; Kim, Y. H.; Kang, J.-B. J. Chem. Soc., Perkin Trans. 1 1996, 2201 and references cited therein. (d) Du¨rr, U.; Heinemann, F. W.; Kisch, H. J. Organomet. Chem. 1997, 541, 307 and references cited therein.
(22) Kondo, T.; Kodoi, K.; Nishinaga, E.; Okada, T.; Morisaki, Y.; Watanabe, Y.; Mitsudo, T. J. Am. Chem. Soc. 1998, 120, 5587-5588.
(23) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123, 10407-10408.
(24) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2000, 122, 12049-12050.
(25) (a) Peter, H.; Wren, S. A. C. J. Chem. Soc., Perkin Trans. 1 1990, 2089. (b) Gilchrist, T. L.; Wood, J. E. J. Chem. Soc., Perkin Trans. 1 1992, 9.
(26) (a) Rayabarapu, D. K.; Cheng, C. H. Chem. Commun. 2002, 942-944. (b) Rayabarapu, D. K.; Yang, C. -H.; Cheng, C. -H. J. Org. Chem. 2003, 68, 6726-6731.
(27) (a) Rayabarapu, D. K.; Cheng, C. -H. J. Am. Chem. Soc. 2002, 124, 5630-5631. (b) Rayabarapu, D. K. Shukla, P.; Cheng, C. H. Org. Lett. 2003, 5, 4903-4906. (c) Jeevanandam, A.; Korivi, R. P.; Huang, I.-W.; Cheng, C. -H. Org.Lett. 2002, 4, 807-810. (d) Shanmugasundaram, M.; Wu, M. -S.; Cheng, C. -H. Org. Lett. 2001, 3, 4233-4236. (e) Hsiao, T. -Y.; Santhosh, K. C.; Liou, K. -F.; Cheng, C. -H. J. Am. Chem. Soc. 1998, 120, 12232-12236. (f) Rayabarapu, D. K.; Cheng, C. -H., Chem. Eur. J. 2003, 9, 3164. (g) Rayabarapu, D. K.; Chiou, C. -F.; Cheng, C. -H. Org. Lett. 2002, 4, 1679-1682. (h) Huang, D. -J.; Rayabarapu, D. K.; Li, L. -P.; Sambaiah, T.; Cheng, C. -H. Chem. Eur. J. 2000, 6, 3706-3713.
(28) (a) Larock, R. C.; Tian, Q.; Pletnev, A. A. J. Am. Chem. Soc. 1999, 121, 3238-3239. (b) Pletnev, A. A.; Tian, Q.; Larock, R. C. J. Org. Chem. 2002, 67, 9276-9278.
(29) Ghosh, S.; Saha, S. Tetrahedron 1985, 41, 349.
(30) Amrein, W.; Schaffner, K. Helv. Chim. Acta 1975, 58, 380.