簡易檢索 / 詳目顯示

研究生: 陳禹銘
Yu Ming Chen
論文名稱: 顱內動脈與側向瘤脈動流場之數值模擬
Numerical Simulations on Pulsatile Flow in an Intracranial Artery with a Sidewall Aneurysm
指導教授: 劉通敏
Tong Miin Liou
丁大為
Ta-Wei David Ting
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 134
中文關鍵詞: 顱內動脈瘤脈動流壁剪應力壓力
外文關鍵詞: Cerebrovascular side-wall aneurysm, Pulsatile flow, Wall shear stress, Pressure
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有關顱內直型與彎型母管側向動脈瘤之定量速度場量測文獻甚少,尤其缺乏重要但實驗上困難量測的瘤體壓力分佈以及流入瘤體之流量資訊,更無數值模擬相關文獻可說明導致動脈瘤破裂之機制。有鑑於此,本文乃以數值模擬計算探討脈動狀態下曲率半徑(Rm/D)為 與2.5之動脈母管與其上側向動脈瘤的脈動流場特性,旨在經由計算結果與文獻中之於實驗脈動波形(模擬人體內頸動脈,ICA)下的動脈瘤量測數據比較驗證後,進一步提供實驗之文獻中所缺乏的脈動流場特性、瘤體壓力分佈及流入瘤體流量;且因人體後腦循環上之動脈瘤病變對人體的非自律神經系統更為嚴重,故迨數值結果與實驗數據驗證無誤後,再將動脈母管內之流動現象設為人體後腦動脈(PCA)的脈動波形並進行運算。本文實驗脈動現象中之無因次參數,沃門斯理數 為3.9,雷諾數Re最大值為850、最小值為300且平均值為600;PCA脈動現象中之無因次參數,沃門斯理數 為3.9,雷諾數Re最大值為250、最小值為10且平均值為60;而所討論之血流動力因數與相關物理量為瘤內渦漩結構、瘤內活動力、流入瘤體之流量、瘤內速度向量與二次流、瘤璧面剪應力及瘤壁面壓力分佈。結果顯示本文之數值模擬能夠相當合理的重現先前文獻之定性與定量量測結果,而所計算之脈動流場特性除提供相關研究人員參考外,並配合臨床報告以板殼理論之拉普拉斯定理說明導致動脈瘤破裂之機制應為瘤體壓力隨脈動週期之劇烈變化,故減緩此影響動脈瘤破裂之危險因子乃為將來醫療人員以人工支架治癒動脈瘤之設計重點。


    目錄 摘要………………………………………………………………I 誌謝…………………………………………………………… II 目錄……………………………………………………………III 圖目錄…………………………………………………………VII 符號………………………………………………………….XVII 第一章 前言………………………………………………1 1-1研究動機…………………………………………………1 1-2文獻回顧…………………………………………………2 1-2-1臨床研究………………………………………………2 1-2-2模型實驗………………………………………………3 1-2-3數值模擬………………………………………………4 1-3研究目的…………………………………………………7 第二章 理論分析………………………………………9 2-1計算模型尺寸……………………………………………9 2-2計算格點分佈……………………………………………10 2-3基本假設…………………………………………………10 2-3-1顱內動脈血管之流動現象……………………………10 2-3-2第一考量參數…………………………………………12 2-3-3第二考量參數…………………………………………13 假設一:不可壓縮且均質流體…………………………13 假設二:牛頓性流體……………………………………14 假設三:剛性管壁………………………………………14 2-3-4限制條件………………………………………………15 2-4統馭方程式…………………………………………………15 2-5流體參數……………………………………………………17 2-6邊界條件……………………………………………………17 2-6-1第一部份:主計算區上游母管………………………18 2-6-2第二部份:主計算區及下游母管……………………21 2-7起始條件…………………………………………………22 第三章 數值方法與計算模型驗證…………………………23 3-1有限體積差分法…………………………………………23 3-2數值離散法………………………………………………23 3-2-1對流-擴散項之差分………………………………23 3-2-2非穏態項之差分……………………………………26 3-2-3SIMPLEC數值演算法………………………………28 3-2-4非交錯式網格………………………………………32 3-2-5收斂標準……………………………………………32 3-3格點獨立測試……………………………………………33 3-3-1主計算區上游母管之格點獨立測試…………………34 3-3-2主計算區及下游母管之格點獨立測試………………34 3-4主計算區入口邊界條件與Womserley解之數值驗證…35 第四章 結果與討論………………………………………36 4-1實驗脈動波形……………………………………………36 4-1-1瘤內活動力…………………………………………36 4-1-2流入瘤體之體積流量…………………………………37 4-1-3數值模擬與實驗量測之瘤內速度向量場驗證………38 4-1-4直型、彎型母管與其上側向瘤內之基本流場特性…39 4-1-5縱剖面(Y*=Y/D=0)上之流場分析……………………41 4-1-6橫截面(X*=X/D=0)上之流場分析……………………44 4-1-7壁面剪應力……………………………………………45 4-1-8壁面壓力………………………………………………49 4-2 PCA脈動波形……………………………………………52 4-2-1瘤內活動力……………………………………………52 4-2-2流入瘤體之體積流量….………………………………52 4-2-3直型、彎型母管與其上側向瘤內之基本流場特性…53 4-2-4縱剖面(Y*=Y/D=0)上之流場分析……………………54 4-2-5橫截面(X*=X/D=0)上之流場分析……………………57 4-2-6壁面剪應力…………………………………………57 4-2-7壁面壓力……………………………………………59 4-3動脈瘤破裂之血流動力因數假說…………………………60 4-3-1 Laplace Law…………………………………………60 第五章 結論與未來建議…………………………………63 5-1結論…………………………………………………………63 5-1-1實驗脈動波形部分…………………………………63 5-1-2 PCA脈動波形部分……………………………………64 5-1-3流體破裂之血流動力假說……………………………66 5-2未來建議…………………………………………………66 參考文獻………………………………………………………68 附錄……………………………………………………………A1

     Aneis, M., Stancampiano, A.P., Wahloo, A.K. and Liber, B.B, (1997) Modeling of flow in a stragight stented and nonstented sidewall aneurysm model, ASME J. Biomechanical Engineering, Vol.119,pp.206-212
     Artmann, H., Vonofakos, D., Muller, H., and Grau, H., (1984) neuroradiologic and neuropatholohic findings with growing giant intracranial aneurysm: Review of the Literature, Surgical Neurology, Vol. 21,pp. 391-401
     Bando, K., Berger, S.A, (2003) Research on fluid-dynamic design criterion of stent used for treatment of aneurysms by means of computational simulation, J. Computational Fluid Dynamics, vol.11 no.4, pp.527-531
     Bassiouny, H.S., Zarins, C.K., Kadowaki, M.H. and Glagov, S.(1994)Hemodynamic stress and experimental aorti-liac atherosclerosis. J. Vascular Surgery, 19:426-434.
     Black, S.P.W. and German, W.L. (1960) Observation on the relationship between the volume and the size of the orifice of Experimental aneurysms. J. Neurosurg., 17:984-990.
     Burleson, A.C., Strother, C.M. and Turitto, V.T. (1995) Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery, 37:774-784.
     Crawford, T. (1959) Some observations of the pathogenesis and natural history of intracranial aneurysms. J. Neurosurg. Psychiatry, 22:259-266.
     Crompton, M.R. (1966) Mechanism of growth and rupture in cerebral berry aneurysms. Br. Med. J., 1:1138-1142.
     Ferguson, G.G. (1970) Turbulence in human intracranial saccular aneurysms. J. Neurosurg., 33:485-497.
     Ferguson, G.G. (1972) Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms., J. Neurosurg. Vol.37,pp.666-677.
     Friedman, M. H., Hutchins, G.M., Bargeron, C. B., Deters, ).T., and Mark, F. F., (1981) Correlation between intimal thickness and fluid shear in human arteries, Atherosclerosis, Vol. 39, 00. 425-436
     Fry, D.L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res., 22:165-197.
     Fry, D.L. (1969) Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the
    dog. Cir. Res., 14:93-108.
     Giddens, D.P., Zarins, C.K. and Glagov, S. (1990) Response of arteries to near-wall fluid dynamic behavior. Appl. Mech. Rev., 43:98-102.
     Glagov, S., Vito, R., Giddens, D.P. and Zarins, C.K. (1992) Microarchitecture and composition of artery wall: relationship to location,diameter and the distribution of mechanical stress. J. Hypertension,10:s101-s104.
    Gonzalez, C.F., Cho, Y.I., Ortega, H.V. and Moret, J. (1992) Intracranial aneurysms: flow analysis of their origin and progression. AJNR., 13:181-188.
     Hashimoto, T. (1984) Dynamic measurement of pressure and flow velocities in glass and silastic berry aneurysms. Neurol. Res., 6:22-28.
     Hardesty WH, Roberts B, Toole JF, et al (1960) Studies of Carotid-artery blood flow in man. New Eng J Med 263:944-946
     Hassler O, (1961) Morphological studies on the large cerebral arteries with reference to the aetiology of subarachnoid haemorrhage. Acta Neurol Scand Suppl 154:1-145
     Hoi, Y. H. Meng, B.R. Bendok, L.R.Guterman, L.N. Hopkins.(2002) Effect of vessel curvature on intracranial aneurysmal Flow. Proceeding of the Second Joint EMBS/BMES Conference, Houston, TX, USA.
     Kayembe, K.N.T., Sasahara, M., Hazama, F. (1984) Cerebral aneurysmsand variations of the circle of willis. Stroke, 15:846-850.
     Leibovich, S. (1984) Vortex stability and breakdown: survey and extension.AIAA Journal, 22(9):1192-1206.
     Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S., (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and oscillating shear stress, Atherosclerosis, Vol. 5, 00. 293-302
     Liepsch, D.W. (1986) Flow in tubes and arteries—a comparison.Biorheology, 23:395-433.Liepsch, D.W., Steiger, H.J., Poll, A. and Reulen, H.J. (1987) Hemodynamic stress in lateral saccular aneurysms. Biorheology, 24:689-710.
     Liou, T.M., Chang, W.C. and Liao, C.C. (1997a) LDV measurements in lateral model aneurysms of various sizes. Experiments in Fluids, 23:317-324.
     Liou, T.M. and Liao, C.C. (1997b) Flowfields in lateral aneurysm arising from parent vessels with different curvatures using PTV. Experiments in Fluids, 23:288-298.
     Liou, T.M. and Liao, C.C. (1997c) PTV study of the wormersley number effects on pulsatile flows in a lateral aneurysm model. Proceedings of ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada.
     Liou T. M., Ting T.W., Chen Y. M. (2003),Numerical Analysis of Reynolds Number Effects on the Intra-Aneurysmal Flow Features of a Lateral Aneurysmal Arising from a Straight Parent Vessel, ,20th Nat. Conf. on Mech. Energ. ,Taipei,Taiwan
     Liou T.M., Liou S.N., and Chu K.L., (2004,a), "Intra-Aneurysmal Flow with Helix and Mesh Stent Placement across Sidewall Aneurysmal Pore of a Straight Parent Vessel," Trans. ASME, Journal of Biomechanical Engineering, Vol. 126, pp.36-43
     Liou T.M. and Liou S.N., (2004,b), "Pulsatile Flows in a Lateral Aneurysm Anchored on a Stented and Curved Parent Vessel," Journal of Experimental Mechanics.
     Löw, M., Perktold, K. and Rauning, R. (1993) Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. Biorheology, 30:287-298.
     Massound, T.F., Guglielmi, G., Ji, C., Vinuela, F. and Duckwiller, G.R. (1994) Experimental saccular aneurysms I. Review of surgically-constructed models and their laboratory applications. Neuroradiology, 36:537-546.
     Moore, J E., Xu, C., Glagov, S., Zarins, C.K. and Ku, D.N. (1994) Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis, 110:225-240.
     Nagasawa S, Kawanishi M, Tada Y, Kawabata S, Ohta T.(2000) Intra-operative measurement of cortical arterial flow volumes in posterior circulation using Doppler sonography. Neurol Res.2000 Mar;22(2):194-6
     Niimi, H., Kawano, Y. and Sugiyama, I. (1984) Structure of blood flow through a curved vessel with an aneurysm. Biorheology, 21:603-615.
     Nichols W., O’Rourke M., (1990), McDonald’s flow in arterier, Lea & Febiger, Philadelphia, London.
     Perktold, K., Gruber, K. and Kenner, T. (1984) Calculation of pulsatile flow and particle paths in an aneurysm model. Basic Res. Cardiol., 79:256-261.
     Perktold, K., Peter, R. and Resch, M. (1989) Pulsatile non-newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology, 26:1011-1030.
     Piotr Hryniewicz, John P. Willis, Said Jahanmir, Hooshang Heshmat.(2002) Quantification of Blood Hemolysis Due to Mechanical Shearing. Mohawk Innovative Technology, Inc. Albany, NY12205.
     Rhie, C.M., and Chow, W.L., (1983), Numerical study of the turbulence flow and airfoil with trailing edge separations, AAIA Journal Vol.26, No.6.
     Ramaling S. Danturthi, Lloyd D. Partrudgeand Vincent T. Turitto(1997) Hemodynamics of intracranial saccular lateral aneurysms: Flow Simulation Studies. IEEE,0-7803-3/97
    Sahs, A.L. (1966) Observations on the pathology of saccular aneurysms, J. Neurosurg., 24:79-806.
     Sekhar, L.N. and Heros, R.C. (1981) Origin, growth, and rupture of saccular aneurysms—a review. Neurosurgery, 8:248-260.
     Stehbens WE, (1963) Histopathology of cerebral aneurysms. Arch Neurol 8:272-285
     Steiger, H.J. and Reulen, H.J. (1986) Low frequency flow fluctuations in saccular aneurysms. Acta Neurochir., 83:131-137.
     Steiger, H.J., Poll, A., Liepsch, D. and Reulen, H.J. (1987a) Basic flow structure in saccular aneurysms: a flow visualization study. Heart and Vessels, 3:55-65.
     Steiger, H.J., Poll, A., Liepsch, D. and Reulen, H.J. (1987b) Haemodynamic stress in lateral saccular aneurysms. Acta Neurochir., 86:98-105.
     Steiger, H.J., Poll, A., Liepsch, D. and Reulen, H.J. (1988) Hemodynamic stress in terminal aneurysms. Acta Neurochir., 93:18-23.
     Suzuki, J. and Ohara, H. (1978) Clinicopathological study of cerebral aneurysms: origin, rupture, and growth. J. Neurosurg., 48:505-514.
     Tognetti, F; Limoni P;Testa C (1983) Aneurysm growth and hemodynamic stress. Surgical Neurology 20:74-78
    Van Doormal, J.P and Raithby, G. D.,(1984) Enhancements of the SIMPLE Method for Predicting Incompressible Fluids Flows, Numer. Heat Transfer, 7, pp. 147-163.
     Womersley J.R.(1955),Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J.Physical.127, 553-563
     Zarins, C.K., Gidden, D.P., Bharadvaj, B.K., Scottiurai, V.S., Mabon, R.F. and Glagov, S. (1983) Carotid bifurcation atherosclerosis: quantitative correlation of plague localization with flow velocity profiles and wall shear stress. Circulation Research, 53:502-514.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE