研究生: |
張臨安 Chang, Lin-An |
---|---|
論文名稱: |
以電漿輔助化學氣相沉積法鍍製高氮氮化矽薄膜其熱退火對光學特性與機械特性之影響 Annealing effect on the optical and mechanical properties of nitrogen-rich silicon nitride film fabricated by plasma enhance chemical vapor deposition |
指導教授: |
趙煦
Chao, Shiuh |
口試委員: |
李正中
Lee, Cheng-Chung 陳至信 Chen, Jyh- Shin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 氮化矽薄膜 、電漿輔助化學氣相沉積法 、熱退火 、光學吸收 、機械損耗 |
外文關鍵詞: | silicon nitride, plasma enhance chemical vapor deposition, Annealing effect, optical absorption, mechanical loss |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射干涉重力波天文台利用大型麥克森干涉儀探測重力波訊號。重力波訊號非常微弱不易偵測,因此需降低偵測時的雜訊,方可探測到更大量的重力波訊號;其中高反射鏡之薄膜熱雜訊是主要雜訊之一,此雜訊會與材料之機械損耗成正比關係。此外高反射鏡材料的光學特性也需有一定的品質,因此本研究致力開發低機械損耗且具良好光學特性之材料。
本實驗室所開發之高氮氮化矽薄膜在室溫下有良好之機械損耗,但有較高的光學吸收,在低溫下機械損耗也偏高,並未達到下世代的Voyager重力波探測站的規格需求;本研究藉由高溫熱退火製程,設法降低高氮氮化矽薄膜的機械損耗與光學吸收,並量測分析退火後材料的應力、楊氏模數、鍵結密度、光學特性以及室溫與低溫機械損耗。
光學特性量測結果發現N-H鍵以及光學吸收都會因為退火溫度提升而有下降的趨勢,兩者下降的幅度呈現線性正相關。低溫機械損耗量測結果發現退火900℃後N-H鍵的下降使材料中N-H鍵多種穩態的轉換減少,因此大幅降低低溫下的機械損耗;在20K溫度下仍有一較小之損耗峰值,此損耗峰值之活化能大小約為44.9meV;在120K溫度下有極低的機械損耗大小約為3.4×10^(-5),此損耗大小符合下世代Voyager重力波探測站的高反射鏡的規格。
The Laser Interferometer Gravitational-wave Observatory detect the cosmic gravitational waves by using large Michelson interferometer. The gravitational waves signals are very weak and hard to detect, so it is necessary to reduce the noises of the detector to detect more gravitational waves signals. The coating Brownian noise is one of the main noises and it is proportional to the mechanical loss. In addition, coating materials must have high-quality optical properties. Therefore this thesis is dedicated to developing the material with low mechanical loss and low optical loss.
In our group have developed the nitrogen-rich silicon nitride. The properties of this material have the low mechanical loss at room temperature but have high optical absorption and high cryogenic mechanical loss. These hinder the application of the coating to the next-generation detector. In this research, we try to use thermal annealing to reduce its optical loss and mechanical loss. Further, we measure and analyze its stress, Young’s modulus, bond concentrations, optical properties, and mechanical loss to find the way to achieve the specification of the next-generation detector.
The experimental results show that the N-H bond concentration and optical absorption will decrease by increasing the annealing temperature, and the magnitude of the decrease is linearly positively correlated. The cryogenic mechanical loss of the film is extremely reduced after annealing at 900℃ because of the decrease of the two-level system associated with the N-H bond. The cryogenic loss peak is at approximately 20K. The activation energy of these loss peaks is about 44.9meV. At 120K, the loss value is about 3.4×10^(-5) that is a potential candidate material in the next-generation cryogenic detector.
[1] A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Annalen der Physik, 49, 769 (1916)
[2] B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, PRL, 116, 061102 (2016)
[3] B. P. Abbott et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, PRL, 119, 161101 (2017)
[4] LIGO Scientific Collaboration, Instrument Science White Paper 2018, LIGO Document: LIGO-T1800133 (2018)
[5] H. B. Callen, T. A. Welton, Irreversibility and Generalized Noise, Phys. Rev., 83, 34-40 (1951)
[6] R. F. Greene, H. B. Callen, On the Formalism of Thermodynamic Fluctuation Theory, Phys. Rev., 83, 1231 (1951)
[7] H. B. Callen, R. F. Greene, On a Theorem of Irreversible Thermodynamics, Phys. Rev., 86, 702 (1952)
[8] I. W. Martin et al., Low temperature mechanical dissipation of an ion-beam sputtered silica film, Class. Quantum Grav., 31, 035019 (2014)
[9] I. W. Martin et al., Effect of heat treatment on mechanical dissipation in Ta2O5 coatings, Class. Quantum Grav., 27, 225020 (2010)
[10] H. Pan et al., Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector, Phys. Rev. D, 97, 022004 (2018)
[11] P. G. Murray et al., Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems, Phys. Rev. D, 92, 062001 (2015)
[12] J. Steinlechner et al., Optical absorption of ion-beam sputtered amorphous silicon coatings, Phys. Rev. D, 93, 062005 (2016)
[13] Y. Liu, N. Jehanathan. John Dell, Thermally induced damages of PECVD SiNx thin films, J. Mater. Res., 26, 19 (2011)
[14] H. Chen, Annealing effect on the room temperature mechanical loss of the silicon nitride films deposited with PECVD on silicon cantilever, Master thesis, National Tsing Hua University (2017)
[15] G.E. Jellison, Jr et al., Spectroscopic ellipsometry characterization of thin-film silicon nitride, Thin Solid Films, 313-314, 193-197 (1998)
[16] G.E. Jellison, Jr et al., Parameterization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett., 69, 371 (1996)
[17] T. Liu, Study of annealing effect on the optical properties and the room temperature mechanical loss of the silicon-rich silicon nitride films deposited with PECVD, Master thesis, National Tsing Hua University (2018)
[18] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 6 (1992)
[19] X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Materials Characterization, 48, 1 (2002)
[20] C. Lee, Study of the material properties and the mechanical loss of the silicon nitride film deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application, Master thesis, National Tsing Hua University (2013)
[21] E. S. Andrés et al. Rapid thermal annealing effects on the structural properties and density of defects in SiO2 and SiNx:H films deposited by electron cyclotron resonance, Journal of Applied Physics, 87, 1187 (2000)
[22] https://www.bruker.com/
[23] E. A. Taft, Characterization of Silicon Nitride Films. J. Electrochem. Soc., 118, 1341-1346 (1971)
[24] S. Hasegawa et al. Connection between Si-N and Si-H Vibrational Properties in Amorphous SiNx: H Films. Philos. Mag. B, 59, 365−375 (1989)
[25] A. L. Alexandrovski et al., Photothermal common-path interferometry (PCI): new developments, Proc.SPIE 7193, Solid State Lasers XVIII: Technology and devices 71930D doi:10.1117/12.814813 (2009)
[26] N. Kang, Photothermal common-path interferometry system setup and study of the optical absorption of the silicon nitride film deposited by PECVD method, Master thesis, National Tsing Hua University (2017)
[27] https://www.newport.com/
[28] https://www.corning.com/
[29] D. R. M. Crooks. Mechanical loss and its significance in test mass mirrors of gravitational wave detectors. Ph.D. thesis, University of Glasgow, 121-123 (2002)
[30] X. Liu, R. O. Pohl, Low-energy excitations in amorphous films of silicon and germanium. Phys. Rev. B, 58, 9067-9081 (1998)
[31] B. A. Walmsley, Y. Liu, X. Z. Hu et al., Poisson’s ratio of low-temperature pecvd silicon nitride thin films, J. Microelectromechanical Syst.,16, 622-627 (2007)
[32] V. Ziebart, O. Paul, U. Munch et al., Thin-Films: stresses and mechanical properties VII: A novel method to measure Poisson’s ratio of thin films, Cambridge University Press, 27-32, ISBN: 978-1-107-41330-6 (1998)
[33] C. L. Dai, A resonant method for determining mechanical properties of Si3N4 and SiO2 thin films, Materials Letters, 61, 3089-3092 (2007)
[34] T. Y. Zhang, Y. J. Su, C. F. Qian et al., Microbridge testing of silicon nitride thin films deposited on silicon wafers, Acta mater., 48, 2843-2857 (2000)
[35] J. Oul, Setup of room temperature mechanical loss measurement and preliminary measurement results on fused silica and silicon cantilevers, Master thesis, National Tsing Hua University (2012)
[36] C. Cheng, Cryogenic mechanical loss measurement system setup and annealing effect on the mechanical loss of the nano-layer coatings, Master thesis, National Tsing Hua University (2015)
[37] H. Wu Cryogenic Mechanical Loss of SiNxHy and SiN0.40H0.79/SiO2 Stacks Deposited by Plasma Enhanced Chemical Vapor Deposition Method, Master thesis, National Tsing Hua University (2017)
[38] M. Wu, Room Temperature Mechanical Loss of SiN0.40/SiO2 Quarter-wave Stacks Deposited by Plasma Enhanced Chemical Vapor Deposition Method, Master thesis, National Tsing Hua University (2017)
[39] I. W. Martin, Studies of materials for use in future interferometric gravitational wave detectors, PhD thesis, University of Glasgow (2009)
[40] O. L. Anderson, H. E. Bommel, Ultrasonic absorption in fused silica at low temperatures and high frequencies, Journal of the American Ceramic Society, 38, 125–131 (1955)
[41] D. J. McLachlan, L. L. Chamberlain, Atomic vibrations and melting point in metals, Acta Metallurgica, 12, 571–576 (1964)
[42] R. E. Strakna, Investigation of low temperature ultrasonic absorption in fast-neutron irradiated SiO2 glass, Physical Review, 123, 2020–2026 (1961)
[43] L. Kuo et al., Inhibition of Cryogenic Mechanical Loss in Thin Films by Thickness Reduction, LIGO Document: LIGO-T1800300 (2016)
[44] H. Ho, Annealing effect on room temperature and cryogenic mechanical loss of ion beam sputtered nano-layer coatings, Master thesis, National Tsing Hua University (2017)
[45] R. Hamdan et al., Molecular dynamics study of the mechanical loss in amorphous pure and doped silica, The Journal of Chemical Physics, 141, 054501 (2014)
[46] J. P. Trinastic et al., Molecular dynamics modeling of mechanical loss in amorphous tantala and titania-doped tantala, Phys. Rev. B, 93, 014105 (2016)
[47] C. R. Billman et al., Origin of the second peak in the mechanical loss function of amorphous silica, Phys. Rev. B, 95, 014109 (2017)
[48] S. Huang, Stress and mechanical loss study for the double-side coated SiNx films on silicon cantilever, Master thesis, National Tsing Hua University (2015)
[49] K. Somiya, Detector configuration of KAGRA - the Japanese cryogenic gravitational-wave detector -, Class. Quantum Grav, 29, 124007 (2012).
[50] M. H. Srodsky et al., Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering, Phys. Rev. B, 16, 8 (1977)
[51] H. Shanks et al., Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon, Phys. Status Solidi, 100, 43 (1980)
[52] C. J. Fang et al., The hydrogen content of a-Ge:H and a-Si:H as determined by ir spectroscopy, gas evolution and nuclear reaction techniques, Journal of Non-Crystalline Solids, 35-36, 255-260 (1980)
[53] A. Morimoto et al., Properties of Hydrogenated Amorphous Si-N Prepared by Various Methods, Jpn. J. Appl. Phys., 24, 1394, (1985)
[54] K. Chen, Materials characterization and structural design of ceramic micro turbomachinery, Ph.D. Thesis, Department of Mechanical Engineering, MIT, USA, (1999).