簡易檢索 / 詳目顯示

研究生: 蔡杏宜
Tsai, Hsin-YI
論文名稱: 利用氧化亞銅多面體奈米晶體進行芳基炔分子的氫硼化催化反應
Polyhedral Cu2O Nanocrystals for Aryl Alkyne Hydroboration Reactions
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 劉青原
Liu, Ching-Yuan
陳貴通
Tan, Kui-Thong
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 52
中文關鍵詞: 氧化亞銅多面體奈米晶體氫硼化反應
外文關鍵詞: Cuprous oxide, Polyhedral Nanocrystals, Hydroboration Reactions
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以前的工作發表過銅立方體可以催化芳基炔烴硼氫化反應。本研究嘗試使用氧化亞銅立方體,八面體和菱形十二面體作為類似的硼氫化反應的催化劑。使用這些具有相同總表面積的氧化亞銅奈米晶體進行活性比較,並添加苯乙炔,三苯基膦和雙聯頻哪醇硼酸酯在1,4-二噁烷中以在60℃下反應五小時,可以得到高產率,且具有100%(E)形式產物的選擇性。{110}-菱形十二面體催化該反應的效率最高,產率為99%,八面體為73%,立方體只有62%。接下來,使用最有效的氧化亞銅菱形十二面體用於廣泛範圍的芳烴炔烴硼氫化反應已經賦予良好的69至99%的優異產率。SEM圖像和PXRD圖顯示反應後晶體形態和組成並沒有變化。


    Our previous work has shown that Cu cubes can catalyze aryl alkyne hydroboration reactions. This study attempts to use Cu2O cubes, octahedra, and rhombic dodecahedra as catalysts for similar hydroboration reactions. Using these Cu2O nanocrystals having the same total surface area for their activity comparison, and adding phenylacetylene, triphenylphosphine as base, and bis(pinacolato)diboron in 1,4-dioxane to perform the hydroboration reaction at 60 ºC for 5 h, 100% (E)-form products have been obtained with high yields. {110}-bound rhombic dodecahedra were the most efficient in catalyzing this reaction giving 99% yield, octahedra was 73%, and cubes only 62%. Next, use the most efficient Cu2O rhombic dodecahedra for a broad range of aromatic alkyne hydroboration reaction has given product good to excellent yields of 69 to 99%. SEM images and PXRD patterns show no change to the crystal morphology and composition after the reaction.

    ABSTRACT II ACKNOWLEDGEMENT III LIST OF CONTENTS IV LIST OF TABLES V LIST OF FIGURES VI LIST OF SCHEMES X 1.Introduction 1 1.1 Cuprous oxide and its application properties with specific facets 1 1.2 The studies of hydroboration reaction 6 1.3 Hydroboration mechanism 8 1.4 Isomers of hydroborated product 10 2. Motivation 12 3. Experimental Section 13 3.1 Chemicals 13 3.2 Synthesis of Cu2O Nanocrystals 13 3.3 Cu2O Nanocrystal-Catalyzed Hydroboration Reactions 16 3.4 Recyclability of the Hydroboration Reaction 16 3.5 Heterogeneous Catalysis Test 17 4. Instrumentation 17 5. Results and Discussion 18 6. Conclusion 31 7. References 32 Appendix 34

    1.Chen, K.; Sun, C.; Song, S.; Xue, D. CrystEngComm 2014, 16, 5257‒5267.
    2.Chen, K.; Sun, C.; Xue, D. Phys. Chem. Chem. Phys. 2015, 17, 732‒750.
    3.Zhan, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C. 2010, 114, 5073‒5079.
    4.Zhang, Y.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Chem. Mater. 2006, 18, 867‒871.
    5.Bao, H.; Zhang, W.; Hua, Q.; Jiang, Z.; Yang, J.; Huang, W. Angew. Chem., Int. Ed. 2011, 50, 12294‒12298.
    6.Chanda, K.; Rej, S.; Huang, M, H. Chem.‒Eur. J. 2013, 19, 16036‒16043.
    7.Xu, Y.; Wang, H.; Yu, Y.; Tian, L.; Zhao, W.; Zhang, B. J. Phys. Chem. C 2011, 115, 15288‒15296.
    8.Wei, H. M.; Gong, H. B.; Chen, L.; Zi, M.; Cao, B. Q. J. Phys. Chem. C 2012, 116, 10510‒10515.
    9.McShane, C. M.; Siripala, W. P.; Choi, K.-S. J. Phys. Chem. Lett. 2010, 1, 2666‒2670.
    10.Lyu, L.-M.; Huang, M, H. J. Phyys. Chem. C 2011,115, 17768-17773.
    11.Kuo, C.-H.; Huang, M, H. J. Am. Chem. Soc. 2008, 130, 12815-12820.
    12.Chiu, C.-Y.; Chung, P.-J.; Lao, K.-U.; Liao, C.-W.; Huang, M. H. J. Phys. Chem. C 2012, 116, 23757–23763.
    13.Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320–2354.
    14.Gunanathan, C.; Hölscher, M.; Pan, F.; Leitner, W. J. Am. Chem. Soc. 2012, 134, 14349–14352.
    15.Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13–31.
    16.Moure, A, L.; Mauleon, P.; Arrayas, R. G.; Carretero, J. C. Org, Lett. 2013, 15, 2054–2057.
    17.Kim, H. R.; Yun, J. Chem. Commun. 2011, 47, 2943–2945.
    18.Zhao, J.; Niu, Z.; Fu, H.; Li, Y. Chem. Commun. 2014, 50, 2058‒2060.
    19.Thoka, S; Madasu, M.; Hsia, C.-F.; Liu, S.-Y.; Huang, M. H. Chem. Asian J. 2017, 12, 2318‒2322.
    20.Molander, G, A.; Ellis, N, M. J. Org. Chem. 2008, 73, 6841–6844.
    21.Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261–1267.
    22.Kuo, C.-H.; Huang, M, H. Nano Today 2010, 5, 106-116.
    23.Kaushik, C.; Rej, S.; Huang, M. H. Nanoscale 2013, 5, 12494–12501.
    24.Grirrane, A.; Corma, A.; Garcia, H. Chem. Eur. J. 2011, 17, 2467–247.
    25.Verma, P, K.; Shegavi, M, L.; Bose, S, K.; Geetharani, K. Org. Biomol. Chem., 2008,16, 857 –873.
    26.Yao. K. X; Yin. X.Y; Wang. T. H; Zeng. H. C. J. Am. Chem. Soc. 2010, 132, 6131–6144.
    27.Hua. Q; Shang. D; Zhang. W; Chen. K; Chang. S; Ma. Y; Jiang. Z; Yang, J; Huang. W. Langmuir 2011, 27, 665–671.
    28.Leng, M; Yu. C; Wang. C. CrystEngComm 2012, 14, 8454–8461.
    29.Lee, J. -E; Kwon, J; Yun, J. Chem. Commun., 2008, 733-734

    QR CODE