研究生: |
林慧婷 Lin, Huiting |
---|---|
論文名稱: |
利用掃描式超導量子干涉顯微鏡系統研究量子磁通渦漩在第二類超導體薄膜之行為 A study of vortices in type-II superconductors by using scanning SQUID microscope |
指導教授: |
齊正中
Chi, Cheng Chung 陳正中 Chen, Jeng Chung |
口試委員: |
林大欽
王明杰 崔章琪 吳茂昆 林登松 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 掃描式超導量子干涉儀 、第二類超導體 |
外文關鍵詞: | scanning SQUID microscope, type-II superconductors |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用自製的掃描式超導量子干涉顯微鏡系統(SSM)來研究量子磁通渦旋在鈮與鐵硒碲之第二類超導薄膜中的行為。SSM是一個在探測微小磁場與磁通分布方面非常強大的工具,它被廣大的運用在各個方面,例如描繪第二類磁通渦旋分布、銅基超導對對稱性的驗證及其他…。我們所使用的掃描晶片基本上擁有磁通雜訊約1-3 ´ 10-5 Φ0/ÖHz,而收集磁力線的集磁迴圈直徑約10微米,因此空間解析度大約為5微米;最大掃描範圍為1毫米乘1毫米。本以為我們的系統是無法取得足夠關於滲透深度的量測,但我們發現最大的磁通渦旋值與集磁迴圈的距離有一定的關係;利用此方法,我們得到150奈米厚的鐵硒碲薄膜的等效滲透深度約為0.88微米,此為相似成份單晶樣品的兩倍左右,這個差異大致上是來自於我們的薄膜樣品有較短的平均自由徑。
雖然SSM的反應時間較長,但我們利用重複干擾然後量測的方式使SSM仍可以做到動態磁通渦旋的研究。我們利用三角脈衝電流驅動在鈮膜上的磁通渦旋,我們可以藉由此方式分辨何處為釘札較強的區域,此區域內的磁通漩渦較難以三角脈衝電流驅動直到有夠大的電流強度;而隨後即出現的磁通渦旋聚集現象,會聚集在特定位置,極性會隨電流方向改變而變化,這種令人驚訝的發現需要有更深入的研究才能推論出形成的原因。
We have used a home-made Scanning SQUID Microscope (SSM) to study vortices in type II superconducting thin films with primary focus on Nb and FeSe0.3Te0.7. SSM is a powerful tool to detect small magnetic field and flux distributions. The SQUID chip used in our SSM system typically has a loaded flux noise floor of 1-3 ´ 10-5 Φ0/ÖHz with a pickup loop close to a circular loop of 10 mm in diameter, situated inside a low-temperature m-metal cup. Thus the spatial resolution of SSM is limited to half of the loop size, i.e. 5 mm. The maximum scan range is about 1 mm ´ 1 mm controlled by an X-Y stage with precision stepping motors. Mapping a single vortex in superconducting film with our SSM does not reveal any useful information about the London penetration depth l, because it is typically much smaller than our spatial resolution. However, we have found out that the measured vortex peak flux value can be used to deduce the penetration depth provided the pickup loop to the film distance is known. Using this method, we have determined the effective penetration depth for our 150 nm thick FeSe0.3Te0.7 film to be about 0.88 mm, which is about twice the reported valued for single crystal samples of similar compositions. This is hardly surprising since our film has much shorter carrier mean free path than single crystals.
We have also studied the vortex dynamics with the SSM, even though the response time of the SSM is longer than the time required for studying the vortex dynamics in real time. It is made possible by using the repeated perturbing-then-watching method. We used pulsed ramp currents to drive the vortices in a Nb film patterned as a meander line. With this method we can clearly distinguish the strong pinning sites from the weaker ones. We have also found that the strong pinned vortices are hardly moved by increasing the amplitude of the pulsed ramp currents until a critical value is reached. Then all strongly pinned individual vortices disappear, and instead, several bundled vortices of opposite polarity appear at certain locations. Further increasing the amplitude of the pulsed ramp current does not alter the pattern any more. Applying a reversed pulsed ramp current of the critical value, the bundled vortices are dispersed into individual ones. More such pulses will result in bundled vortices with opposite polarities comparing to the original one. This surprising observation requires further studies to reveal its cause.
[1] Josephson B D 1962 Phys. Lett.1,No.7
[2] Anderson P W and Rowell J M 1963 Phys. Rev. Lett. 10, No.6
[3] Jaklevic R C, Lambe J, Silver A H, and Mercereau J E 1964 Phys. Rev. Lett. 12,159
[4] Silver A H and Zimmerman J E 1967 Phys. Rev. 157,317
[5] Zimmerman J E and Silver A H 1966 Phys. Rev. 141,367
[6] Clarke J 1966 Phil. Mag. 13,115
[7] Clarke J, Deaver B S, Jr. and Goree W S 1967 Proc. Symposium on the Physics of Superconducting Device
[8] Clarke J, Goubau W M, and Ketchen M B 1976 J Low Temp. Phys. 25, 99
[9] Tesche C D and Clarke J 1977 J Low Temp. Phys. 27, 301
[10] Kirtley J R, Ketchen M B, Stawiasz K G, Sun J Z, Gallagher W J, Blanton S H, and Wind S J 1995 Appl. Phys. Lett. 66, 1138
[11] Tsuei C C, Kirtley J R, Chi C C, Yu-Jahnes L S, Gupta A, Shaw T, Sun J Z, and Ketchen M B 1994 Phys. Rev. Lett. 73 593
[12] Wu S L, Wang M J, Chen T J, Chen C W, Wu M K, And Chi C C 2010 Physica C 470 S879
[13] Tang C C, Lin H T, Wu S L, Chen T J, Wang M J, Ling D C, Chi C C, and Chen J C 2014 Rev. Sci. Instrum. 85 083707
[14] Kirtley J R, Ketchen M B, Tsuei C C, Sun J Z, Gallagher W J, Yu-Jahnes L S, Gupta A, Stawiasz K G, and Wind S J 1995 IBM J. RES. DEVELOP. 39 NO. 6
[15] Kirtley J R, Tsuei C C, Rupp M, Sun J Z, Yu-Jahnes L S, Gupta A, Ketchen M B, Moler K A, and Bhushan M 1996 Phys. Rev. Lett. 76 1336
[16] Moler K A, Kirtley J R, Liang R, Bonn D A, and Hardy W N 1997 PhysRevB 55 12753
[17] Moler K A, Kirtley J R, Hinks D G, Li T W, and Xu M 1998 Science 279 1193
[18] Kirtley J R, Moler K A, Schlueter J A, and Williams J M 1999 J. Phys.: Condens. Matter 11 2007
[19] Moler K A, Kirtley J R, Liang R, Bonn D A, Hardy W N, Williams J M, Schlueter J A, Hinks D, Villard G, Maignan A, Nohara M, and Takagi H 2000 Physica C 341-348 977-980
[20] Huy H T, Hayashi M, Kato M, Van Hieu N, and Ishida T 2014 IEEE TRANSACTIONS ON MAGNETICS 50 NO. 6
[21] File J and Mills R G 1963 Phys. Rev. Lett. 10 No.3
[22] Kirtley J R, Ketchen M B, Tsuei C C, Sun J Z, Gallagher W J, Yu-Jahnes L S, Gupta A, Stawiasz K G, and Wind S J 1995 IBM J. RES. DEVELOP. 39 NO. 6
[23] Carneiro G and Brandt E H 2000 PhysRevB 61 6370
[24] Agassi D and Cullenr J R 2000 Physica C 334 274
[25] Clarke J and Braginski A I 2004 The SQUID Handbook (WILEY-VCH)
[26] Kirtley J R, Tsuei C C, Rupp M, Sun J Z, Yu-Jahnes L S, Gupta A, Ketchen M B, Moler K A, and Bhushan M 1996 Phys. Rev. Lett. 76 1336
[27] Wang M J, Cheng H W, Ho Y H, Chin C C, and Chi C C 2001 J. Phys. Chem. Solids 62 1731
[28] Wu SL 2008 Construction of a Scanning SQUID Microscope and study of individual Abrikosov vortex penetration in type II superconducting thin film Ph. D thesis (Hsinchu: National Tsing Hua University)
[29] Dr. Ming-Jye Wang’s Group Academia Sinica Institute of Astronomy and Astrophysics
[30] Yoichi K, Takumi W, Masahiro H, and Hideo H 2008 J. Am. Chem. Soc. 130 3296
[31] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[32] Hsu F C, Luo J Y, Yeh J Y, Chen Y K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, and Wu M K 2008 Proc. Natl. Acad. Sci. 105 14262
[33] Wu M K, Hsu F C, Yeh K W, Huang T W, Luo J Y, Wang M J, Chang H H, Chen T K, Rao S M, Mok B H, Chen C L, Huang Y L, Ke C T, Wu P M, Chang A M, Wu C T, and Perng T P 2009 Physica C 469 340
[34] Wu M K, Hsu F C, Yeh K W, Huang T W, Luo J Y, Wang M J, Chang H H, Chen T K, Rao S M, Mok B H, Chen C L, Huang Y L, Ke C T, Wu P M, Chang A M, Wu C T, and Perng T P 2009 Physica C 469 340
[35] Fil V D, Zhekov K R, Gaydamak T N, Zvyagina G A, Bilich I V, Chareev D A, and Vasiliev A N 2013 Eur. Phys. Lett. 103 47009
[36] Khasanov R, Conder K, Pomjakushina E, Amato A, Baines C, Bukowski Z, Karpinski J, Katrych S, Klauss H-H, Luetkens H, Shengelaya A, and Zhigadlo N D 2008 Phys. Rev. B 78 220510R
[37] Lei H, Hu R, and Petrovic C 2011 PhysRevB 84 014520
[38] Abdel-Hafiez M, Ge J, Vasiliev A N, ChareevD A, Van de Vondel J, MoshchalkovV V, and Silhanek A V 2013 Phys. Rev. B 88, 174512
[39] Kim H, Martin C, Gordon R T, Tanatar M A, Hu J, Qian B, Mao Z Q, Hu R, Petrovic C, Salovich N, Giannetta R, and Prozorov R 2010 Phys. Rev. B 81, 180503R
[40] Pietosa J, Gawryluk D J, Puzniak R, Wisniewski A, Fink-Finowicki J, Kozlowski M, and Berkowski M 2012 J. Phys.: Condens. Matter 24 265701
[41] Klein T, Braithwaite D, Demuer A, Knafo W, Lapertot G, Marcenat C, Rodière P, Sheikin I, Strobel P, Sulpice A, and Toulemonde P 2010 Phys. Rev. B 82, 184506
[42] Diaconu A, Martin C, Hu J, Liu T, Qian B, Mao Z, and Spinu L 2013 Phys. Rev. B 88, 104502
[43] Tinkham M 1996 Introduction to Superconductivity 2nd edition (Singapore: McGRAW-HILL )
[44] Poole Jr., Farach, Creswick, and Prozorov Superconductivity 2nd edition (Amsterdam: Academic Press)
[45] Maxfield B W and Mclean W L 1965 Phys. Rev. 139 A1515
[46] Kim J, Civale L, Nazaretski E, Haberkorn N, Ronning F, Sefat A S, Tajima T, Moeckly B H, Thompson J D, and Movshovich R 2012 Supercond. Sci. Technol. 25 112001
[47] Nazaretski E, Thibodaux P, Vekhter I, Civale L, Thompson J D, and Movshovich R 2009 Appl. Phys. Lett. 95, 262502
[48] Valenzuela S O, Ferrari H, and Bekeris V Physica B 2000 284-288, 839-840
[49] Clem J R 2009 Phys. Rev.B 80, 184517
[50] Yong H and Zhou Y 2011 J. Appl. Phys. 109, 073902
[51] Via G, Navau C, and Sanchez A 2013 J. Appl. Phys. 113, 093905