簡易檢索 / 詳目顯示

研究生: 苑主用
Yuan, Chu Yung
論文名稱: 高溫純水中不同溫度下鉑金被覆於304不鏽鋼之電化學行為研究
The Electrochemical Behavior of Platinum Treatment on Type 304 SS with Different Coating Temperature in High Temperature Water
指導教授: 葉宗洸
Yeh, Tsung Kuang
口試委員: 王美雅
程子萍
黃俊源
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 沸水式反應器應力腐蝕龜裂加氫水化學貴重金屬添加腐蝕電位
外文關鍵詞: Boiling Water Reactor, stress corrosion cracking, hydrogen water chemistry, noble metal chemical addition, electrochemical corrosion potential
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 沸水式反應器在運轉多年後,應力腐蝕裂縫被發現在爐心組件上產生,為了減緩裂縫的成長,及抑制新裂縫的起始以延長電廠使用壽命及運作安全,加氫水化學被廣泛地運用在多個沸水式反應器中,其利用氫氣與氧氣的再結合作用,降低水中的氧化性,以達到抑制腐蝕的效果。由於過多的氫氣會造成輻射人員劑量過高等副作用,貴重金屬被覆配合氫氣使用的技術開始被使用,利用貴重金屬催化氫與氧再結合的效果,在相同的腐蝕電位下,能有效的降低注氫量。一般在電廠的啟動過程中,會由於上一個工作循環殘留大量的氧化劑在爐心環境中,且當時氫氣尚不能注入爐心,因此對於貴重金屬是否會加速氧化劑的反應,造成啟動過程裂縫的啟始產生疑慮。
    本研究利用三個被覆溫度(90℃、150℃、288℃),被覆鉑金至304不鏽鋼表面,並在三個不同的工作溫度(200℃、250℃、288℃)中,測量不同水環境,鉑金被覆試片以及304不鏽鋼試片的電化學差異。結果顯示在氧化性的水環境中,鉑金被覆試片的腐蝕電位及腐蝕速率皆高於未被覆的304不鏽鋼試片;但在還原性環境裡,鉑金則能有效的催化氫氣的反應,使得腐蝕電位及腐蝕速率都低於未被覆的不鏽鋼試片。


    After many decades of operation, stress corrosion cracking (SCC) have been found in many boiling water reactors (BWR). To mitigate SCC, hydrogen water chemistry (HWC) has been widely adopted in BWRs around the world. HWC is a technology injecting H2 into feedwater to recombine H2 with O2 or hydrogen peroxide (H2O2) under radiative environment. The recombination can decrease the concentration of O2 and H2O2, accompanying lower electrochemical corrosion potential (ECP), in coolant system. ECP is a driving force of SCC initiation, which alters with the variation of dissolved O2, H2O2 and H2 concentration. By lowering the ECP, the susceptibility to SCC is reduced and the crack initiation and growth rate are effectively slowed down.
    There are some side effects have been reported by using HWC. Noble metal chemical application (NMCA) or On-line NobleChemTM (OLNC) have been developed to solve the problems. The concept of these technologies are coating noble metal on structure components to catalyst the recombination of H2 and O2 or H2O2. HWC combines with NMCA or OLNC can achieve the same level as HWC only of ECP by injecting lower H2. ECP decreases by lacking of oxidant, so structural components can be well protected. However, if noble metal existed on the structural components without injecting H2, it might catalyst the reaction of oxidant, which will enhance the corrosion rate.
    Both HWC and noble metal coating technology needed to inject H2 to mitigate SCC. During the startup process, coolant dissolved massive remaining O2 and H2O2 from the last operation cycle, SCC might grow faster. When O2 and H2O2 are catalyzed by coated noble metal, the redox reaction on the components will be enhanced. The corrosion behaviors on the components get stronger.
    In this study, we used three coating temperature (90℃、150℃、288℃) to coat Pt particle on surfaces of stainless steel. Then used three working temperature (200℃、250℃、288℃) to detect the electrochemistry differences. The results show that the ECP and corrosion current density of Pt coated specimens are both higher than the untreated specimens’ under oxidizing environment. However, in the reducing environment, Pt particles which can also catalyze the reaction of hydrogen cause the ECP and corrosion current density of Pt coated specimens smaller than the untreated ones.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第二章 基礎理論 5 2.1 應力腐蝕龜裂 5 2.1.1 裂縫形成原因 6 2.1.2 防治方法 8 2.2 腐蝕電化學 9 2.2.1 混合電位理論 10 2.2.2 伊凡斯圖(Evans Diagram) &史登圖(Stern Diagram) 12 2.2.3 貴重金屬化學添加的電化學原理 14 第三章 文獻回顧 17 3.1 不鏽鋼於高溫水環境下的氧化膜型態 17 3.1.1 高溫純水中不鏽鋼表面氧化膜結構 17 3.1.2 電化學阻抗分析 23 3.1.3 氧化膜結構對腐蝕電化學的影響 25 3.2 加氫水化學 28 3.3 貴重金屬添加 31 3.3.1 貴重金屬添加的腐蝕電位變化 32 3.3.2 NMCA與OLNC 33 3.3.3 不同參數對貴重金屬被覆的影響 34 第四章 研究方法 39 4.1 實驗流程概述 39 4.2 試片準備 40 4.3 敏化程度測試 40 4.4 水循環系統 42 4.6.1 模擬BWR系統 42 4.6.2 鉑金被覆系統 43 4.5 參考電極製作 44 4.5.1 鋯/氧化鋯參考電極 44 4.5.2 銀/氯化銀參考電極 45 4.6 預長氧化膜 45 4.7 鉑金被覆 46 4.8 高溫電化學分析 46 4.9 試片分析 48 第五章 實驗結果與討論 49 5.1 敏化測試 49 5.2 掃描式電子顯微鏡表面分析 50 5.2.1 預長氧化膜 50 5.2.2 鉑金被覆 51 5.2.3 過氧化氫環境下氧化膜變化 58 5.3 感應耦合電漿質譜分析 60 5.4 高溫電化學分析 61 5.4.1 300 ppb溶氧之電化學量測 63 5.4.2 含過氧化氫之電化學量測 67 5.4.3 低溶氧之電化學量測 74 5.4.4 100 ppb溶氫之電化學量測 76 5.4.5 鉑金於280℃被覆一天之電化學量測 79 第六章 結論 82 第七章 未來工作 84 參考資料 85

    [1] R.L. Cowan, Nuclear Engineering International, 1986, p.26.
    [2] R.L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry,” Water Chemistry of Nuclear Energy and Design, 1966.
    [3] Chien C. Lin, F.R. Smith, R.L. Cowan, “Effect of Hydrogen Water Chemistry on Radiation Field Buildup in BWRs,” Water Chemistry of Nuclear Energy and Design, 1966.
    [4] S. E. Garcia, et al.,” Effect of Hydrazine, Carbohydrazide and Hydrogen Injection on NobleMetal Treated Stainless Steel ECP and IGSCC Mitigation During BWR Startups,” International Conference on Water Chemistry of Nuclear Reactor Systems, 2010.
    [5] J.T. Busby. G.S. Was, E.A. Kenik, “Isolating the Effect of Radiation-Induced Segregation in Irradiation-Assisted Stress Corrosion Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Soltions,” Corrosion, vol. 55, pp.1101-1109, 1999.
    [6] P.L. Andresen, “Factors Governing the Prediction of LWR Component SCC Behavior from Laboratory Data,” Corrosion, vol. 99, 1999.
    [7] J. Oudar, P. Marcus, “Corrosion Mechanisms in Theory and Practice,” New York : M. Dekker, pp. 525-526, 1995.
    [8] N. Perez, “Electrochemistry and Corrosion Science,” Kluwer Academic Publishers, pp. 80-157, 2004.
    [9] C.S. Kumai, T.M. Devine, “Oxidation of Iron in 288℃, Oxygen-Containing Water,” Corrosion, Vol. 61, No 3.
    [10] Y.J. Kim, “Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288℃ Water Containing Oxygen, Hydrogen Peroxide,” Corrosion, vol. 55, pp. 81-88, 1999.
    [11] B. Stellwag, Corrosion Science, vol. 40, No 2, p. 337, 1998.
    [12] J. Robertson, “The Mechanism of High Temperature Aqueous Corrosion of Stainless Steels,” Corrosion Science, pp.443-465, 1991.
    [13] Y.J. Kim, “Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288℃ Water,” International Water Chemistry Conference, 2004.
    [14] S. Uchida et al. “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless in High Temperature Water, (Ⅴ) Characterization of Oxide Film with Multilateral Surface Analyses,” Journal of Nuclear Science and Technology, vol. 39, pp. 1199-1206, 2002.
    [15] S. Uchida et al. “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (Ⅳ) Determination of Oxide Film Properties with Multilateral Surface Analyses,” Journal of Nuclear Science and Technology, vol. 42, pp. 233-241, 2005.
    [16] S. Uchida et al. “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (Ⅴ) Characterization of Oxide Film with Multilateral Surface Analyses,” Journal of Nuclear Science and Technology, vol. 43, pp. 884-895, 2006.
    [17] Y.J. Kim, “In-Situ Electrochemical Impedance Measurement of Oxide Film Formed on Type 304 Stainless Steel in High-Temperature Water,” Corrosion Science, 2000.
    [18] S. Uchida et al. “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (II),” Journal of Nuclear Science and Technology, 2014.
    [19] C.C. Lin, Y. J. Kim, L. W. Niedrach, M.Itow, Corrosion, vol. 48, p. 16, 1992.
    [20] S. Uchida et al. “Effects Of Hydrogen Peroxide On Intergranular Stress Corrosion Cracking Of Stainless Steel in High Temperature Water, (IV),” Journal of Nuclear Science and Technology, 2014.
    [21] S. Uchida et al. “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (V),” Journal of Nuclear Science and Technology, 2014.
    [22] Y.J. Kim et al “Development of ECP Models for BWR Application,” International Conference on Environment Degradation, Vol. 2, 1996.
    [23] S. Uchida et al, “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (Ⅰ),” Journal of Nuclear Science and Technology, 1998.
    [24] S. Uchida, Y. Morishima, T. Hirose, T. Miyazawa, T. Satoh, Y. Satoh, "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel (VI) —Effects of Hydrogen Peroxide and Oxygen on Anodic Polarization Properties of Stainless Steel in High Temperature Pure Water,” Journal of Nuclear Science and Technology, vol. 44, pp. 758-766, 2007.
    [25] C.C. Lin, F.R. Smith, N. Ichikawa, M. Itow, “Electrochemical Potential Measurements Under Simulated BWR Water Chemistry Conditions,” National Association of Corrosion Engineers, 1992.
    [26] Y. Wada, S. Uchida, “Empirical Understanding of the Dependency of Hydrogen Water Chemistry Effectiveness on BWR Designs,” Journal of Nuclear Science and Technology, 2012.
    [27] B. Stellwag, M. Lasch, U. Staudt, “Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants,” Japan Atomic Industrial Forum Conference, 1998.
    [28] C.C. Lin“Prediction of N-16 Steam Transport in BWRs under Hydrogen Water Chemistry Conditions,” Water Chemistry of Nuclear Reactor Systems, 1996.
    [29] Chien C. Lin, F.R. Smith, R.L. Cowan, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design, 1994.
    [30] Robert L. Cowan, Juan Varela, Susan E. Garcia“The Effect of On-Line Noble Metal Addition on the Shut Down Dose Rates of Boiling Water Reactors,” International Conference on Environmental Degradation, 2011.
    [31] Young-Jin Kim, Peter L. Andresen, “Protective Insulated Coating for SCC Mitigation in BWRs,” International Conference on Environmental Degradation, 2011.
    [32] Susan E. Garcia, Andrew D. Odell, Joseph F. Giannelli, James A. Tangen, “Approaches to Enhancing Early Hydrogen Water Chemistry for IGSCC Mitigation During BWR Startups,” Nuclear Plant Chemistry Conference, 2014.
    [33] Russell A. Seeman, Juan A. Varela, “Review of BWR Industry Implementation of On-Line Noblechem™ Process Update and Operating Experience,” Nuclear Plant Chemistry Conference, 2014.
    [34] Y.J. Kim, J.A. Varela, “Plant Chemistry Response to On-Line NobleChemTM” Nuclear Plant Chemistry Conference, 2012.
    [35] Kazushige Ishida, Yoichi Wada, “Effects of Noble Metal Deposition upon Corrosion Behavior of Structural Materials in Nuclear Power Plants, (I) Effect of Noble Metal Deposition with an Oxide Film on Type 304 Stainless Steel under Simulated Hydrogen Water Chemistry Condition,” Journal of Nuclear Science and Technology, 2005.
    [36] Pascal V. Grundler, Lyubomira Veleva, Amuthan Ramar, Stefan Ritter, “A Comprehensive Investigation of the Platinum Application to BWRs to Mitigate Stress Corrosion Cracking,” Nuclear Plant Chemistry Conference, 2014.
    [37] Y. Wada, et al. “Effectiveness analysis of noble metal treatment to mitigation of intergranular stress corrosion cracking of stainless steel in BWR reactor water environment,” Environmental Degradation of Materials in Nuclear Power Systems, p. 488 , 2003.
    [38] Young-Jin Kim, Peter L. Andresen, Samson Hettiarachchi, “Use of Noble Metal Nanoparticle for SCC Mitigation BWRs,” International Conference on Environment Degradation, 2011.
    [39] Pascal V. Grundler, Lyubomira Veleva, Haifeng Gu, Steffen Allner, Bojan Niceno, Stefan Ritter, “Noble Metal Application for SCC Mitigation in BWRS: Platinum Nanoparticle Penetration into Crevices and Cracks Under Controlled Flow Conditions,” International Conference on Environment Degradation, 2015.
    [40] Pascal V. Grundler, Lyubomira Veleva, Amuthan Ramar, Stefan Ritter, “A Comprehensive Investigation of the Platinum Application to BWRs to Mitigate Stress Corrosion Cracking,” Nuclear Plant Chemistry Conference, 2014.
    [41] R. Katsura, M. Kodama, and S. Nishimura, “DL-EPR Study of Neutron Irradiation in Type 304 Stainless Steel,” Corrosion, 1992.
    [42] R. Leiva-García, M.J. Muñoz-Portero, J. García-Antón, “In-Situ Study of Single and Double Loop Reactivation Methods During the Characterisation of the Degree of Sensitisation of a Duplex Stainless Steel (UNS 1.4462) Using a Minicell and a Confocal Microscope,” International Journal of Electrochemical Science, 2011.
    [43] Chenfeng Zhao, P. Chris Pistorius, “Effect of Mass Transfer Conditions on Double-Loop EPR Sensitization Testing of Austenitic Stainless Steel,” ECS Electrochemistry Letters, 2015.
    [44] R.S Greeley, Journal of Physical Chemistry, vol. 64, p. 625, 1960
    [45] 董育銘, “應用於超臨界水環境中耐高溫參考電極之進階研究,” 國立清華大學碩士論文, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE