簡易檢索 / 詳目顯示

研究生: 吳柏毅
Wu, Po-Yi
論文名稱: 高溫純水中過氧化氫於氧化鋯被覆304不□鋼表面之電化學行為分析
The Influence of ZrO2 Treatment on the Electrochemical Behavior of hydrogen peroxide on Type 304 Stainless Steels in High Temperature Water
指導教授: 蔡春鴻
Tsai, Chuen-Horng
葉宗洸
Yeh, Tsung-Kuang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 135
中文關鍵詞: 沸水式反應器沿晶應力腐蝕龜裂抑制性被覆氧化鋯電化學動態電位極化掃描
外文關鍵詞: BWR, IGSCC, IPC, ZrO2, electrochemical potentiodynamic polarization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    沸水式反應器(Boiling Water Reactor, BWRs)長時間運轉,其內部隸屬壓力邊界(pressure boundary)的組件材料容易遭受沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)劣化破壞。電化學腐蝕電位(electrochemical corrosion potential, ECP)為評估304不□鋼組件在288 ℃純水環境中是否發生沿晶應力腐蝕龜裂的重要指標。核能工業多採用加氫水化學( hydrogen chemistry, HWC )技術,降低組件材料的電化學腐蝕電位,防制IGSCC的發生。然而HWC在較高注氫量下(高於0.6ppm),會伴隨著輻射劑量率增加的副作用。另一種防蝕技術─抑制性被覆( Inhibitive Protective Coatings , IPC)的發展逐漸盛行。IPC技術甚至在不施行HWC情況下,亦能有效降低材料的腐蝕電位與腐蝕電流密度。
    本研究利用IPC技術,針對模擬BWR不同管路位置水化學環境下預長氧化膜的304不□鋼試片施以氧化鋯被覆處理,在90 ℃條件下採用動態循環熱水沉積法( hydrothermal deposition),再對試片進行各種表面分析。並模擬BWR爐心因輻射水解(water radiolysis)而產生溶氧與過氧化氫的高溫高壓純水環境,隨氧化劑濃度變化進行電化學動態電位極化掃描(electrochemical potentiodynamic polarization)以了解不同水化學環境下預長氧化膜施行抑制性被覆前後電化學特性差異。
    結果顯示,溶氧環境下預長氧化膜試片經由抑制性被覆後(O-90),SEM影像觀察到氧化鋯在試片表面呈局部較厚與較薄分佈。並由高溫極化掃描驗證了氧化鋯被覆對於溶氧有抑制的效果,能如預期的降低金屬的腐蝕電流密度、電化學腐蝕電位與氧化劑的交換電流密度,但是對低濃度的過氧化氫才有抑制效果。而過氧化氫環境下預長氧化膜試片施行抑制性被覆後(HP-90),被覆效果優於 O-90試片,且對於各種濃度的過氧化氫水環境皆有抑制成效,雖然不能有效降低金屬的腐蝕電位,卻能大幅削減其的腐蝕電流密度與過氧化氫的交換電流密度。

    Abstract
    As the boiling water reactors (BWRs) age, Intergranular stress corrosion cracking (IGSCC) of structural materials used in boiling water reactor (BWR) piping systems and vessel internals is the major degradation problem. Research has demonstrated that below a critical electrochemical corrosion potential (ECP) of -230 mVSHE, the susceptibility of stainless steel to IGSCC is substantially reduced. In past decade, several approaches to mitigating IGSCC by lowering the ECP have been developed and investigated. In the early 1980s, technique of hydrogen water chemistry (HWC), which reduced the oxidizing power of the BWR coolant environment by hydrogen injection and subsequently lowered the susceptibility of stainless steel components to SCC, was widely developed to mitigate the IGSCC problems. However, several side effects of HWC have been reported, such as increased N16 carry - over to the main stream line , a higher Co60 deposition rate , high H2 cost, etc. In addition, the IGSCC critical potential (-230 mVSHE) was difficult to achieve in highly oxidizing, high fluid flow and / or high level irradiation regions.
    Recently, a new approach was explored to lower the corrosion potential and the corrosion current densities at all locations of BWRs, even without the presence of H2. It is termed Inhibitive Protective Coating (IPC), based on the assumption that a dielectric coating will inhibit the redox reaction on the surface and, therefore, the dissolution of metal at the crack-tip to which they are coupled – without the addition of hydrogen.
    An experiment has been conducted to investigate the effects of inhibitive coating with zirconia (ZrO2) by hydrothermal deposition on Type 304 SS. The primary task in this study was to determine significant electrochemical parameters such as electrochemical corrosion potential, corrosion current density, exchange current density and Tafel constant of the reduction reactions of oxygen and hydrogen peroxide before and after inhibitive protective coatings. Specimens before and after the zirconia treating process were examined by the scanning electron microscopy (SEM) , the energy dispersive X-ray spectroscopy (EDX), focus ion beam image (FIB) and laser Raman spectra (LRS) . Effects of inhibitive coating with zirconia on Type 304 were measured by electrochemical potentiodynamic polarization tests in simulated BWR environment. Test results showed that treated SS specimens (O-90) in dissolved oxygen exhibited lower ECP than pre-oxidized specimens (P-O), and that specimen exhibited lower ECP only in lower hydrogen peroxide concentration. In high hydrogen peroxide concentration, the IPC treatment is unable to reduce ECP. On the contrary, the IPC specimens (HP-90) in dissolved H2O2 condition revealed nearly the same ECP level as that of the untreated ones (P-HP) for a wide H2O2 range. Furthermore, the corrosion current densities and exchanged current densities of H2O2 on the HP-90 specimens were lower apparently than those on the untreated ones. The overall results indicated that the ZrO2 treatment could effectively reduce the corrosion rate of Type 304 stainless steel in simulated BWR environments in views of both corrosion current densities and exchanged current densities.


    目錄 摘要……… I Abstract. II 謝辭…… III 目錄…… IV 圖目錄.. VI 表目錄… XI 第一章 前言....... 1 1.1 研究背景...... 1 1.2 研究目的...... 2 1.3 論文結構...... 3 第二章 文獻回顧... 4 2.1 應力腐蝕龜裂.. 4 2.1.1應力腐蝕龜裂肇因...... 5 2.1.2應力腐蝕龜裂的型態.... 7 2.1.3應力腐蝕龜裂現代理論.. 8 2.1.4防治方法..... 11 2.2 不□鋼組件在高溫形成氧化膜的特性 14 2.2.1 高溫純水中不□鋼表面氧化膜結構 14 2.2.2 高溫純水中不□鋼表面表面氧化膜成長機制 20 2.2.3 拉曼散射光譜分析..... 27 2.2.4 電化學阻抗分析....... 29 2.2.5 氧化膜結構對電化學腐蝕電位( ECP )的影響 30 2.3 電化學腐蝕電位與應力腐蝕龜裂關係 31 2.4 加氫水化學( HWC )與貴重金屬添加( NMCA )特性....... 33 2.4.1 加氫水化學.. 33 2.4.2 貴重金屬添加 35 2.5 抑制性被覆( Inhibitive Protective Coating , IPC ). 37 2.5.1 溶膠凝膠法( Sol-gel ) 38 2.5.2 電漿噴灑法( Plasma Spray ).... 39 2.5.3 合金添加法( Alloy ).. 40 2.5.4 化學添加法( Chemical Addition )........ 40 2.5.5 抑制性覆膜機制....... 43 第三章 理論基礎... 46 3.1 混合電位理論.. 46 3.1.1 混合電位模式 ( Mixed Potential Model, MPM )..... 46 3.1.2 影響ECP大小的重要參數 47 3.2 伊凡斯圖( Evan’s diagram )………………………………………… 48 3.2.1 加氫水化學( HWC )…………………………………………... 48 3.2.2 貴重金屬添加( NMCA )……………………………………… 49 3.2.3 抑制性被覆( IPC )……………………………………………. 50 第四章 研究方法... 53 4.1 實驗方法與流程 53 4.2 試片準備...... 53 4.3 敏化程度測試.. 55 4.4 預長氧化膜.... 56 4.5 抑制性被覆.... 56 4.6 實驗設備...... 57 4.6.1 模擬BWR水循環系統.... 57 4.6.2 參考電極製作 59 4.7 表面分析...... 59 4.8 高溫電化學分析 60 4.8.1 預長氧化膜電化學腐蝕電位( ECP )監測.... 60 4.8.2 動態電位極化掃瞄..... 61 4.9 常溫電化學阻抗分析..... 63 第五章 實驗結果... 64 5.1敏化測試....... 64 5.2 預長氧化膜結果分析..... 65 5.2.1 掃瞄式電子顯微鏡 ( SEM )...... 65 5.2.2 雷射拉曼散射光譜( LRS )....... 72 5.3 IPC試片表面分析........ 75 5.3.1 掃瞄式電子顯微鏡 ( SEM )...... 75 5.3.2 感應耦合電漿質譜分析 (ICP-MS ) 94 5.3.3 雷射拉曼散射光譜 ( LRS )...... 94 5.4高溫電化學分析―電化學腐蝕電位( ECP )監測 97 5.5 高溫電化學分析―動態電位極化掃瞄 98 5.5.1 不同溶氧濃度極化曲線 99 5.5.2 不同過氧化氫濃度極化曲線...... 105 5.5.3 極低溶氧不同溶氫濃度極化曲線.. 112 5.6 聚焦離子束( FIB )橫截面分析..... 114 5.7 常溫電化學阻抗分析..... 121 第六章 結論....... 125 6.1 結果與討論.... 125 6.2 未來工作...... 126 參考文獻. 127 附錄A 縮寫名詞( Abbreviation )...... 133 圖目錄 圖1-1 核電廠管路劣化統計... 2 圖2-1應力腐蝕龜裂三要素與影響因子的關聯性.... 4 圖2-2碳析出物及鉻乏區的形成造成材料敏化...... 6 圖2-3增加流速對裂縫成長速率的影響... 7 圖2-4裂縫成長速率與應力強度的關係圖. 7 圖2-5裂縫成長速率的兩個階段 7 圖2-6 Slip dissolution mechanism氧化反應電荷密度及隨時間變化情形.... 9 圖2-7膜破裂/滑移溶解模式之示意圖.... 10 圖2-8 PLEDGE Model模式下,影響不鏽鋼在BWR環境中腐蝕和機械性裂縫成長的因素.... 10 圖2-9 裂縫不同位置的反應以及在裂縫尖端形成的水環境.... 10 圖2-10 施行IHSI管道內壁應力前後的變化........ 11 圖2-11裂縫成長速率與腐蝕電位及水化學狀態關係圖........ 13 圖2-12加氫水化學及添加聯氨對氧化劑濃度影響... 13 圖2-13高溫純水環境下預長氧化膜表面組態....... 15 圖2-14不同水環境下氧化物成分元素比例 15 圖2-15氧化層側面影像....... 16 圖2-16不同水環境下氧化膜的X光繞射圖. 17 圖2-17不同水環境下氧化膜的雷射拉曼圖 17 圖2-18 SIMS量測到之氧/鐵、鉻/鐵以及氫/鐵的縱深分布... 18 圖2-19不同氧化劑濃度水環境下預長氧化膜的SEM分析....... 19 圖2-20氧化膜的外層顆粒直徑、厚度以及外層的α-Fe2O3的比例.. 19 圖2-21藉由STEM與TEM量測的氧化膜橫截面縱深分析 20 圖2-22 藉由STEM-EDS量測的氧化膜橫截面化學成分分析.... 20 圖2-23 不□鋼在高溫純水環境下生成氧化膜的示意圖...... 21 圖2-24不□鋼在高溫純水環境下magnetite結構生成示意圖... 23 圖2-25 SERS圖譜(a)缺氧環境下不同溫度(b)高溫下不同水化學環境 24 圖2-26 SEM影像(a)缺氧環境下不同溫度 (b) 高溫不同水化學環境 24 圖2-27不鏽鋼在高溫純水中表面氧化膜雙層結構成長模式.... 25 圖2-28高溫水環境Iron-H2O系統的pH-Potential Diagram.... 26 圖2-29高溫水環境Fe-Cr-Ni-H2O系統的pH-Potential Diagram 27 圖2-30不同氧化物的拉曼散射光譜...... 28 圖2-31(a)不同氧化劑濃度對Rp影響(b) Rp與ECP在不同氧化價下的關係圖..... 29 圖2-32不同水化學環境下形成氧化膜的電化學阻抗. 30 圖2-33氧化劑對不□鋼試片ECP的影響... 31 圖2-34不同種類氧化劑條件下對於陰陽極化曲線的比較...... 31 圖2-35 CEFM結合內部和外部環境的氧化與還原反應 32 圖2-36實施HWC後使主要蒸汽管路輻射劑量率升高.. 34 圖2-37實施HWC造成氧化層結構轉變以致Co60溶入爐水示意圖. 34 圖2-38 NWC與HWC之間經常轉換也會助長Co60溶出.. 35 圖2-39氫/氧莫爾比對ECP的影響........ 36 圖2-40 Duane Arnold施以NMCA前後ECP反應 (a)爐心上方空間 (b) 爐心下方空間...... 36 圖2-41主蒸汽管加氫輻射劑量監測...... 37 圖2-42 Evans diagrams顯示施行NMCA前後陰陽極極化曲線變化.. 37 圖2-43 ZrO2的濃度與所製成氧化膜厚度呈現正相關性....... 38 圖2-44(a)沒覆膜的316L SS(b)316L SS經過8000C熱處理2小時(c)TiO2-SiO2覆膜在316L SS的動態電位極化掃描圖形..... 39 圖2-45利用電漿噴塗法被覆304不□鋼試片所製作出IPC覆膜的ECP值.. 39 圖2-46利用合金添加法所測量得到的ECP結果...... 40 圖2-47利用化學添加法所測量得到的ECP結果.......41 圖2-48美國電力研究所有關抑制性被覆對304不□鋼ECP變化的研究結果....... 41 圖2-49 ZrO2在不同溫度下的抑制性覆膜其動態電位極化掃描實驗結果....... 42 圖2-50 ZrO2在不同溫度下所做的抑制性覆膜所量測的ECP結果 42 圖2-51 ZrO2被覆試片與未被覆試片其ECP結果隨溶氧濃度變化的關係圖....... 43 圖2-52不同氧化物在235 oC Zeta potential與pH關係....... 45 圖3-1實施加氫水化學(HWC)下,ECP及金屬腐蝕電流密度之變化.. 49 圖3-2實施貴重金屬添加(NMCA)下,ECP及金屬腐蝕電流密度之變化.. 50 圖3-3溶氧環境下IPC試片的Evan’s Diagram...... 51 圖3-4溶氫環境下IPC試片的Evan’s Diagram...... 52 圖4-1實驗流程圖... 54 圖4-2 DL-EPR極化掃瞄曲線示意圖...... 55 圖4-3高溫水循環電化學分析系統....... 58 圖4-4 氧化鋯被覆動態水循環系統...... 58 圖4-5自製Ag/AgCl 參考電極示意圖.... 59 圖4-6高溫電化學分析時試片擺放方式... 62 圖4-7高溫電化學分析時試片擺放位置示意圖...... 62 圖4-8電化學阻抗分析量測系統 63 圖5-1 DL-EPR量測結果....... 64 圖5-2敏化測試後電子顯微鏡觀察影像... 65 圖5-3第一批預長化膜(P-O)試片表面顯微結構..... 66 圖5-4第一批P-O試片浸泡於過氧化氫水環境10天後的表面顯微結構 ..67 圖5-5第一批P-O試片浸泡於溶氧水環境10天後的表面顯微結構 67 圖5-6第二批預長氧化膜(P-O)試片在300 ppb溶氧下ECP監測及SEM影像....... 68 圖5-7第二批P-O試片浸泡於含氧水環境10天後的表面顯微結構 69 圖5-8預長氧化膜(P-HP)試片在300 ppb過氧化氫水環境下ECP監測及SEM影像.. 70 圖5-9預長氧化膜(P-HP)試片浸泡於過氧化氫水環境10天後的表面顯微結構: (a)5KX (b)10KX (c)20KX.... 71 圖5-10預長氧化膜(P-HP)試片浸泡於過氧化氫水環境10天後的表面顯微結構(氧化層產生裂縫)..... 72 圖5-11 Uchida所做之氧化膜試片在不同水環境下的拉曼散射光譜 73 圖5-12 第一批P-O試片與P-HP試片於不同水化學水環境10天後的拉曼散射光譜分析.... 74 圖5-13 第二批P-O試片與P-HP試片於不同水化學水環境10天後的拉曼散射光譜分析.... 74 圖5-14第一批IPC試片(O-90)SEM影像.... 76 圖5-15 第一批O-90試片氧化鋯較薄被覆層SEM影像 77 圖5-16 第一批O-90試片較薄被覆層表面顯微結構與line scan 78 圖5-17 第一批O-90試片較薄被覆層另一處表面顯微結構與line scan..... 79 圖5-18 第一批O-90試片較厚被覆層表面顯微結構. 79 圖5-19 第一批O-90試片經歷約10天溶氧水環境極化掃描後SEM影像 80 圖5-20 第一批O-90試片經歷約10天溶氧水環境極化掃描後SEM放大影像..... 80 圖5-21第一批O-90試片經歷約10天過氧化氫水環境極化掃描後表面顯微結構... 81 圖5-22 第一批O-90試片超音波震盪前後的表面顯微結構.... 81 圖5-23 第二批IPC試片(O-90)SEM影像.. 83 圖5-24 第二批IPC試片(O-90) 氧化鋯較薄被覆層SEM影像... 83 圖5-25 第二批IPC試片 (O-90)較薄被覆試片表面顯微結構與line scan..... 84 圖5-26 第二批IPC試片(O-90) 氧化鋯較厚鍍層SEM影像..... 84 圖5-27 第二批O-90試片經歷約10天溶氧水環境極化掃描後SEM影像 85 圖5-28 I第二批O-90試片經歷約10天溶氧水環境極化掃描後較薄被覆層..... 85 圖5-29 第二批O-90試片經歷約10天溶氧水環境極化掃描後較厚被覆層....... 86 圖5-30 IPC試片(HP-90)SEM影像....... 87 圖5-31 IPC-100 nm-ZrO2 (HP-90)試片較厚被覆層表面顯微結構 88 圖5-32 IPC-100 nm-ZrO2 (HP-90)試片較薄被覆層表面顯微結構 89 圖5-33 IPC-100 nm-ZrO2 (HP-90)試片另一較薄被覆層試片表面顯微結構... 90 圖5-34 IPC-100 nm-ZrO2 (HP-90)試片較薄被覆層試片另一處表面顯微結構與line scan........ 91 圖5-35 IPC-100 nm-ZrO2 (HP-90)試片較薄被覆層試片另一處表面顯微結構與line scan........ 91 圖5-36 IPC試片(HP-90)經歷約10天過氧化氫水環境極化掃描後SEM影像..... 92 圖5-37 IPC試片(HP-90)經歷約10天過氧化氫水環境極化掃描後SEM較厚被覆層影像...... 93 圖5-38 IPC試片(HP-90)經歷約10天過氧化氫水環境極化掃描後SEM較薄被覆層影像.... 94 圖5-39 第一批O-90試片於不同水化學水環境10天後的拉曼散射光譜分析..... 96 圖5-40 第一批O-90試片與HP-90不同水化學水環境10天後的拉曼散射光譜分析........ 96 圖5-41 預長氧化膜高溫純水環境下ECP監測與SEM影像...... 98 圖5-42 極化曲線示意圖...... 99 圖5-43第一批試片於不同溶氧濃度下的動態極化掃瞄分析圖.. 101 圖5-44第一批P-O試片與O-90試片於288℃純水中不同溶氧濃度極化曲線比較... 102 圖5-45 第一批P-O試片與O-90試片於288℃純水中不同溶氧濃度電化學參數比較........ 103 圖5-46 第二批試片於不同溶氧濃度下的動態極化掃瞄分析圖 104 圖5-47第二批P-O試片與O-90試片於288℃純水中不同溶氧濃度極化曲線比較... 104 圖5-48 第二批P-O試片與O-90試片於288℃純水中不同溶氧濃度電化學參數比. 105 圖5-49 第一批試片於不同過氧化氫濃度下的動態極化掃瞄分析圖 108 圖5-50 電流-電位曲線示意圖 108 圖5-51 第一批P-O試片與O-90試片於288℃純水中不同過氧化氫濃度極化曲線. 109 圖5-52 第一批P-O試片與O-90試片於288℃純水中不同過氧化氫濃度電化學參數比較.... 109 圖5-53 試片於不同過氧化氫濃度下的動態極化掃瞄分析圖 (a) P-HP試片 (b) HP-90試片....... 110 圖5-54 P-HP試片與HP-90試片於288℃純水中不同過氧化氫濃度極化曲線比較. 111 圖5-55 P-HP試片與HP-90試片於288℃純水中不同過氧化氫濃度電化學參數比. 112 圖5-56 P-O試片與O-90試片於288℃純水環境中極低溶氧濃度極化曲線比較... 113 圖5-57 P-O試片與O-90試片於不同溶氫濃度下的動態極化掃瞄分析圖....... 113 圖5-58 P-OH試片與OH-90試片於288℃純水環境中含溶氫濃度25 ppb極化曲線比較...... 114 圖5-59 預長氧化膜(P-O)試片FIB截面影像....... 116 圖5-60 IPC(O-90)試片FIB截面影像.... 117 圖5-61 預長氧化膜(P-HP)試片FIB截面影像...... 118 圖5-62 IPC(HP-90)試片FIB截面影像.... 119 圖5-63預長氧化膜(P-OH)試片FIB截面影像........ 120 圖5-64 IPC(OH-90)試片FIB截面影像.... 121 圖5-65 被覆與未被覆試片在0.1 M K3Fe(CN)6與K4Fe(CN)6的混和溶液中EIS量測曲線... 123 表目錄 表2-1影響核電廠材質應力腐蝕的因子... 4 表2-2金屬材料在具有特定金屬離子的液體環境下發生破裂的敏感性 9 表2-3 在200 ppb O2、200 ppb H2O2、150 ppb H2的水化學環境下所形成氧化膜的組成與結構..... 16 表2-4各種不□鋼雜質的氧化物四面體結構及其生成自由能... 19 表2-5 拉曼散射光譜對金屬氧化物特定訊號統計表. 28 表2-6 α-Fe2O3與Fe3O4在300°C水環境下溶解度... 31 表2-7氧化物的pH of the zero charge之間的關係 45 表4-1 304不□鋼的成分組成.. 53 表4-2敏化程度與顯微結構的變化....... 56 表4-3試片標記與實驗條件對照表....... 57 表4-4儀器基本資料與可獲得之資訊..... 60 表4-5預長氧化膜ECP量測條件. 61 表4-6高溫極化掃描實驗條件.. 62 表5-1拉曼散射光譜對金屬氧化物特定訊號統計表與標號..... 73 表5-2鋯元素在不同氧化結構上的吸附量. 94 表5-3各試片拉曼分析條件表.. 95 表5-4第一批P-O試片與O-90試片在不同溶氧濃度下實驗所得之電化學參數..... 101 表5-5第一批P-O試片與O-90試片在不同溶氧濃度電化學參數之減值因數....... 101 表5-6第二批P-O試片與O-90試片在不同溶氧濃度下實驗所得之電化學參數..... 103 表5-7第二批P-O試片與O-90試片在不同溶氧濃度電化學參數之減值因數....... 103 表5-8第一批P-O試片與O-90試片在不同H2O2濃度下實驗所得之電化學參數..... 107 表5-9第一批P-O試片與O-90試片在不同H2O2濃度電化學參數之減值因數....... 107 表5-10 P-HP試片與HP-90試片在不同H2O2濃度下實驗所得之電化學參數....... . 110 表5-11 P-HP試片與HP-90試片在不同H2O2濃度電化學參數之減值因數 110 表5-12 P-O試片與O-90試片在極低溶氧濃度下實驗所得之電化學參數 112 表5-13未被覆處理試片與O-90試片在溶氫高溫水環境下的電化學參數 113 表5-14不同研究團隊於BWR純水環境中不□鋼氧化膜結構比較 124 表5-15不同研究團隊於BWR純水環境中不□鋼氧化膜厚度比較 125

    參考文獻
    [1] Fredric A. Simonen, Stephen R. Gosselin, “Life Prediction and Monitoring of Nuclear Power Plant Components for Service-Related Degradation” Journal of Pressure Vessel Technology, February 2001, Volume 123, Issue 1, pp. 58-64
    [2] M. Shindo et al, Department of Materials Science and Engineering, Japan Atomic Energy Research Institute, “Effect of minor elements on irradiation assisted stress corrosion cracking of model austenitic stainless steels,” Journal of Nuclear Materials 233-237(1996)1393-1396.
    [3] J.T. Busby, G.S. Was, E.A. Kenik , “Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels,” Journal of Nuclear Materials 302 (2002) 20–40
    [4] M.A.Al-Anezi, G.S.Frankel and A.K. Agrawal, ”Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions,” Corrosion Vol.55 No.11 pp.1101-1109.
    [5] Arsene S , Bai J.B. , Bompard P. , “Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part I. Hydride Embrittlement in Stress-Relieved, Annealed, and Recrystallized ZIRCALOYs at 20 °C and 300 °C,” Metallurgical and Materials Transactions A, Volume34, Number 3, 1 March 2003, pp. 553-566.
    [6] R. L. Cowan, Nuclear Engineering International, January 1986, p. 26.
    [7] R. L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry,” Water Chemistry of Nuclear Reactor Systems 7 , BNES, Bournemouth England, Oct. 13-17 , 1996 , p. 196.
    [8] Chien C. Lin, F. R. Smith, R. L. Cowan, “Effect of Hydrogen Water Chemistry on Radiation Field Buildup in BWRs, ” Nuclear Energy and Design 166 (1996) 31-36.
    [9] U. S. Nuclear Regulatory Commission, Cracking of Vertical Welds in the Core Shroud and Degraded Repair, NRC Information Notice 97-17, April 4, 1997.
    [10] P. L. Andresen, “Factors Governing The Predictoin of LWR Component SCC Behavior from Laboratory Data”, Corrosion /99, paper no. 145, Houston, TX, NACE International, (1999).

    [11] P. L. Andresen, ”Emerging Issues and Fundamental Processes in Environmental Cracking in Hot Water, ” Corrosion Vol.64 No.5 pp.439-464.
    [12] Materials Science and Engineering-An Introduction, 5th Edition W.D. Callister, Jr., John Wiley Sons, Inc., 1999
    [13] P. Chung, “Quantitative Study of the Degree of Sensitization of Austenitic Steel by Electrochemical Measurements, ” M. S. Theses , the Ohio State Uni , 1979
    [14] Herbert H. Uhlig & R. Winston Revie , Corrosion and Corrosion Control, Chapter 7.
    [15] 王佰揚, “不同抑制性被覆條件之敏化304不□鋼在高溫純水環境中的電化學行為研究,” 國立清華大學碩士論文.
    [16] P. Ford et al., “Development and Use of a Predictive Model of Crack Propagation in 304/316L, A533B/A508 and Inconel 600/182 Alloys in 288℃ Water”, Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1988
    [17] F. P. Ford et al., “Stress Corrosion Cracking of Low Alloy Steels under BWR Conditions; Assessment of CHR Algorithms”, 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1999
    [18] Thomas M. Angeliu, P. L. Andresen et al, “Applying Slip-Oxidation to the SCC of Austenitic Materials in BWR/PWR Environments”, CORROSION/98, paper No. 262, Houston, TX, NACE International, (1998).
    [19] 鍾自強〝 焊接奧斯田鐵不锈鋼的問題及解決方法〞機械月刊,第七卷第十期,中華民國七十年10月號
    [20] F.P. Ford , P.L. Andresen, “Corrosion in Nuclear Systems : Environment Assisted Cracking in Light Water Reactors,” in Corrosion Mechanisms , eds. P. Marcus. J. Ouder (New York, NY: Marcel Dekker , 1994 ). pp.501-546
    [21] Kazushige ISHIDA et al., “Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (II) Reactivity of Hydrazine with Oxidant in High Temperature Water under Gamma-irradiation”, Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 43, No. 3, p. 242–254 (2006)
    [22] Kaesche, H., Die Korrosion der Metalle: Phys-Chem. Prinzipien une aktuelle Probleme, 3rd edn. Springer-Verlag, Berlin, 1990.
    [23] Sato, N. and Okamoto, G. , Electrochemical Passivation of Metals, in Comprehensive Treatise of Electrochemistry, Vol. 4, Electrochemical Materials Science, ed. New York and London, 1981, pp. 193-245.
    [24] McBee, C.L. and Kruger, J. Electrochim. Acta, 1972, 17, 1337-1341

    [25] Winkler, R., Htittner, F. and Michel, F. VGB Kraftwerkstechnik, 1989, 69, 527-531.
    [26] Winkler, R. and Lehmann, H. VGB Kraftwerkstechnik, 1985, 65,421426
    [27] Asakura, Y. et al. Corrosion NACE, 1989, 45, 119-124.
    [28] Y.J. Kim, “Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288°C Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide”, Corrosion Vol. 55, No.1, January 1999.
    [29] Young-Jin Kim, “Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288°C Water” International Water Chemistry Conference, San Francisco, October 2004.
    [30] S. Uchida et al., “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless in High Temperature Water, (V) Characterization of Oxide Film on Stainless Steel by multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.39, No.11, p.1199-1206(2002).
    [31] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (IV) Determination of Oxide Film Properties with Multilateral Surface Analyses ,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.2, p.233-241(2005).
    [32] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (V) Characterization of Oxide Film with Multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.43, No.8, p.884-895(2006).
    [33] B. Stellwag, “The Mechanism of Oxide Film Formation on Austenitic Stainless Steels in High Temperature Water,” Corrosion Science, Vol. 40, No. 2, p. 337 (1998).
    [34] Lister, D.H., Davidson, R.D. and McAlpine, E. Corros. Sci., 1987, 27, 113-140.
    [35] Leistikow, S. and Kraft, R. Werkstofjre und Korrosion, 1974,25, 12-25.
    [36] Pick, M.E. and Segal, M.G. Nucl. Eng., 1983,22,433-444.
    [37] Robertson, Corrosion Science, Vol.29, p.1275-1291, 1989.
    [38] R. L. Cowan et al, GE Nuclear Energy, Vallecitos Nuclear Center, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design 166(1996)31-36.
    [39] Y.F. Cheng, F.R. Steward, “Corrosion of carbon steels in high-temperature water studied by electrochemical techniques”, Corrosion Science 46 (2004) 2405–2420
    [40] C.S. Kumai and T.M. Devine, “Oxidation of Iron in 288°C, Oxygen-Containing Water”, Corrosion Vol. 61, No. 3, 2005.
    [41] D.F. Taylor, Corrosion 35 (1979): p. 550.
    [42]B.Beverskog, “Pourbaix Diagrams for the Ternary System of Iron-Chromium-Nickel,” Corrosion Vol. 55, No.11, November 1999.

    [43] Y.J. Kim, “In-Situ Electrochemical Impedance Measurement of Oxide Film on Type 304 Stainless Steel in High Temperature Water,” Corrosion Vol. 56, No.4, April 2000.
    [44] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (III) Evaluation of Electric Resistance of Oxide Film by Equivalent Circuit Analysis for Frequency Dependent Complex Impedances,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.1, p.66-74(2005).
    [45] L. F. Lin, C. Y. Chao, and D. D. Macdonald, “ A Point Defect Model for Anodic Passive Films,” J. Electrochem. Soc, Vol.128, No.6,June 1981.
    [46] D. D. Macdonald et al., "Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in BWR Coolant Environments," Corrosion, Vol. 52, p. 768-785 (1996).
    [47] B. Stellwag, M. Lasch, and U. Staudt ,”Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants ," 1998 JAIF Conference, p186-193.
    [48] R.L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry”, Nuclear Energy, 36, No.4, p.257, 1997.
    [49] C. C. Lin, R.L. Cowan, “Effects of hydrogen water chemistry on radiation field buildup in BWRs”, Nuclear Energy and Design 166(1996)31-36
    [50] Y.J. Kim, P. L. Andresen, ” Transformation Kinetics of Oxide Formed on Noble Metal-Treated Type 304 Stainless Steel in 288°C Water”, Corrosion, Vol. 59, No.6, p. 511-519 (2003).
    [51] S. Hettiarachchi, R.J. Law, T.P. DiaZ, R.L. Cowan, “The First In-Plant Demonstration of Noble Metal Chemical Addition Technology for IGSCC Mitigation of BWR Internal,” 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, August 1014, p.535(1997)
    [52] Tsung-Kuang YEH , Digby D. MACDONALD, “The Efficiency of Noble Metals in Reducing the Corrosion Potential in the Primary Coolant Circuits of Boiling Water Reactors Operating under Hydrogen Water Chemistry Operation,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.43, No.10, p.1228-1236(2006).
    [53] R. Pathania, Zirconium Oxide Deposition to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Atlanta, GA, October 1-3, 1997, EPRI.
    [54] Dibyendu Ganguli and Debtosh Kundu, Central Glass and Ceramic Research Institute, India, “Preparation of amorphous ZrO2 coatings form metal-organic solutions,” Journal of Materials Science Letters, 3(1984)503-504.

    [55] Y. J. Kim and P. L. Andresen, "Application of Insulated Protective Coatings for Reduction of Corrosion Potential in High Temperature Water," Corrosion, Vol. 54, No.12, p. 1012-1017 (1998).
    [56] X. Zhou, I. Balachov and D. D. Macdonald, ”The Effect of Dielectric Coatings on IGSCC in Sensitized Type 304 SS in High Temperature Dilute Sodium Sulfate Solution, ”Corrosion Science. Vol.40 No.8 pp. 1349-1362.
    [57] Z. F. Zhou, E. Chalkova, S. N. Lvov, P. Chou, R. Pathania , ”Development of a hydrothermal deposition for applying zirconia coationgs on BWR materials for IGSCC mitigation, ” Corrosion Science 49 (2007) 830-843.
    [58] Tsung-Kuang YEH1, Ming-Yong LEE and Chuen-Horng TSAI, ” Intergranular Stress Corrosion Cracking of Type 304 Stainless Steels Treated with Inhibitive Chemicals in Simulated Boiling Water Reactor Environments, ” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.39, No.5, p.531-539(2002).
    [59] Tsung-Kuang YEH, Chang-Tong LIU and Chuen-Horng TSAI, ” The Influence of ZrO2 Treatment on the Electrochemical Behavior of Oxygen and Hydrogen on Type 304 Stainless Steels in High Temperature Water, ” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.9, p.805-815(2005).
    [60] Tsung-Kuang YEH, Chuen-Horng TSAI and Yu-Hsiang CHENG, ” The Influence of Dissolved Hydrogen on the Corrosion of Type 304 Stainless Steels Treated with Inhibitive Chemicals in High Temperature Pure Water, ” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.42, No.5, p.462-469(2005).
    [61] Tsung-Kuang Yeh, Yuan-Chin Chien, Bai-Young Wang, Chuen-Horng Tsai, ” Electrochemical Characteristics of Zirconium Oxide Treated Type 304 Stainless
    Steels of Different Surface Oxide Structures in High Temperature Water,” Corrosion Science (2008)
    [62] M. Atik and M. A. Aegerter, “Corrosion resistant sol-gel ZrO2 coatings on stainless steel,” Journal of Non-Crystalline Solids 147&148(1992)813-819.
    [63] Z. F. Zhou et al, “ Optimization of Zirconium Oxide Coating Technology to Mitigate IGSCC in BWRs,” Final Report , BWRVIP-109, EPRI , November, 2002.
    [64] B. Stellwag and R. Kilian, Siemens Nuclear Power GmbH U.Staudt, VGB Germany “Investigation into Alternatives to Hydrogen Water Chemistry in BWR Plants,” 3rd Workshop on LWR Coolant Water Radiolysis and Electrochemistry.
    [65] Z. F. Zhou et al, “Development of a hydrothermal deposition process for applying zirconia coatings on BWR materials for IGSCC mitigation,” Corrosion Science 49(2007)830-843

    [66]Robert J. Hunter, “Zeta Potential in Collode - Science Principles and Applications,” Academic Press 1986.
    [67] P. Jayaweeraa, S. Hettiarachchi,“Determination of the high temperature zeta potential and pH of zero charge of some transition metal oxides”Colloids trnd Swfaces A: Physicochemical and Engineering Aspects, 85 (1994) 19-27
    [68] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel,
    (VI) Effects of Hydrogen Peroxide and Oxygen on Anodic Polarization
    Properties of Stainless Steel in High Temperature Pure Water,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.44, No.5, p.758-766(2007).
    [69] D. D. Macdonald, "Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors," Corrosion, Vol. 48, No. 3 p.194-205 (1992).
    [70] 簡源進, “氧化鋯被覆與不同304不□鋼氧化膜對於溶氫與溶氧在模擬沸水式反應器環境中的電化學特性影響研究,” 國立清華大學碩士論文.
    [71] W.L.Clarke, R. L. Cowan, W. L. Walker, “ Comparative Method for Measuring Degree of Sensitization in Stainless steel,” Intergranular Corrosion of Stainless Alloys, ASTM STP656, (1978)
    [72] Azar P et al., “The Double Reactivation Method for Dectecting Sensitization in AISI 304 Stainless Steels,” Corrosion, Vol. 40, No. 11 p.584-594 (1984).
    [73] R. Katsura et al., “DL-EPR Study of Neutron Irradiation in Type 304 Stainless Steel,” Corrosion, Vol.48, No.5, (1992)
    [74] Yoichi Wada et al., “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (IV) Effects of Oxide Film on Electrochemical Corrosion Potential,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.38, No.3, p.183-192(2001).
    [75] S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (II) Evaluation of Oxide Film Properties by Complex Impedance Measurement,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.41, No.9, p.880-889(2004).
    [76] S. Uchida et al., “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (I) Effects of Hydrogen Peroxide on Electrochemical Corrosion Potential of Stainless Steel,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.35, No.4, p.301-308(1998).
    [77] 余佳銘, “不同加鋅水處理條件之304不□鋼在模擬沸水式反應器環境中的 電化學特性影響研究,” 國立清華大學碩士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE